[PATCH] memcg: relax memcg iter caching

From: Michal Hocko
Date: Tue Feb 12 2013 - 12:08:26 EST


Now that per-node-zone-priority iterator caches memory cgroups rather
than their css ids we have to be careful and remove them from the
iterator when they are on the way out otherwise they might hang for
unbounded amount of time (until the global/targeted reclaim triggers the
zone under priority to find out the group is dead and let it to find the
final rest).

We can fix this issue by relaxing rules for the last_visited memcg as
well.
Instead of taking reference to css before it is stored into
iter->last_visited we can just store its pointer and track the number of
removed groups for each memcg. This number would be stored into iterator
everytime when a memcg is cached. If the iter count doesn't match the
curent walker root's one we will start over from the root again. The
group counter is incremented upwards the hierarchy every time a group is
removed.

Locking rules got a bit complicated. We primarily rely on rcu read
lock which makes sure that once we see an up-to-date dead_count then
iter->last_visited is valid for RCU walk. smp_rmb makes sure that
dead_count is read before last_visited and last_dead_count while smp_wmb
makes sure that last_visited is updated before last_dead_count so the
up-to-date last_dead_count cannot point to an outdated last_visited.
css_tryget then makes sure that the last_visited is still alive.

Spotted-by: Ying Han <yinghan@xxxxxxxxxx>
Original-idea-by: Johannes Weiner <hannes@xxxxxxxxxxx>
Signed-off-by: Michal Hocko <mhocko@xxxxxxx>
---
mm/memcontrol.c | 69 +++++++++++++++++++++++++++++++++++++++++++++++--------
1 file changed, 60 insertions(+), 9 deletions(-)

diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index 727ec39..31bb9b0 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -144,8 +144,13 @@ struct mem_cgroup_stat_cpu {
};

struct mem_cgroup_reclaim_iter {
- /* last scanned hierarchy member with elevated css ref count */
+ /*
+ * last scanned hierarchy member. Valid only if last_dead_count
+ * matches memcg->dead_count of the hierarchy root group.
+ */
struct mem_cgroup *last_visited;
+ unsigned int last_dead_count;
+
/* scan generation, increased every round-trip */
unsigned int generation;
};
@@ -355,6 +360,7 @@ struct mem_cgroup {
struct mem_cgroup_stat_cpu nocpu_base;
spinlock_t pcp_counter_lock;

+ atomic_t dead_count;
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
struct tcp_memcontrol tcp_mem;
#endif
@@ -1156,17 +1162,36 @@ struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
int nid = zone_to_nid(reclaim->zone);
int zid = zone_idx(reclaim->zone);
struct mem_cgroup_per_zone *mz;
+ unsigned int dead_count;

mz = mem_cgroup_zoneinfo(root, nid, zid);
iter = &mz->reclaim_iter[reclaim->priority];
- last_visited = iter->last_visited;
if (prev && reclaim->generation != iter->generation) {
- if (last_visited) {
- css_put(&last_visited->css);
- iter->last_visited = NULL;
- }
+ iter->last_visited = NULL;
goto out_unlock;
}
+
+ /*
+ * If the dead_count mismatches, a destruction
+ * has happened or is happening concurrently.
+ * If the dead_count matches, a destruction
+ * might still happen concurrently, but since
+ * we checked under RCU, that destruction
+ * won't free the object until we release the
+ * RCU reader lock. Thus, the dead_count
+ * check verifies the pointer is still valid,
+ * css_tryget() verifies the cgroup pointed to
+ * is alive.
+ */
+ dead_count = atomic_read(&root->dead_count);
+ smp_rmb();
+ last_visited = iter->last_visited;
+ if (last_visited) {
+ if ((dead_count != iter->last_dead_count) ||
+ !css_tryget(&last_visited->css)) {
+ last_visited = NULL;
+ }
+ }
}

/*
@@ -1206,10 +1231,9 @@ struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
if (css && !memcg)
curr = mem_cgroup_from_css(css);

- /* make sure that the cached memcg is not removed */
- if (curr)
- css_get(&curr->css);
iter->last_visited = curr;
+ smp_wmb();
+ iter->last_dead_count = atomic_read(&root->dead_count);

if (!css)
iter->generation++;
@@ -6366,10 +6390,37 @@ free_out:
return ERR_PTR(error);
}

+/*
+ * Announce all parents that a group from their hierarchy is gone.
+ */
+static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
+{
+ struct mem_cgroup *parent = memcg;
+
+ /*
+ * Make sure we are not racing with mem_cgroup_iter when it stores
+ * a new iter->last_visited. Wait until that RCU finishes so that
+ * it cannot see already incremented dead_count with memcg which
+ * would be already dead next time but dead_count wouldn't tell
+ * us about that.
+ */
+ synchronize_rcu();
+ while ((parent = parent_mem_cgroup(parent)))
+ atomic_inc(&parent->dead_count);
+
+ /*
+ * if the root memcg is not hierarchical we have to check it
+ * explicitely.
+ */
+ if (!root_mem_cgroup->use_hierarchy)
+ atomic_inc(&root_mem_cgroup->dead_count);
+}
+
static void mem_cgroup_css_offline(struct cgroup *cont)
{
struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);

+ mem_cgroup_invalidate_reclaim_iterators(memcg);
mem_cgroup_reparent_charges(memcg);
mem_cgroup_destroy_all_caches(memcg);
}
--
1.7.10.4

--
Michal Hocko
SUSE Labs
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/