Re: [PATCH v9 rebase on mm-unstable 0/8] Reduce tlb and interrupt numbers over 90% by improving folio migration
From: Byungchul Park
Date: Thu May 09 2024 - 03:42:56 EST
On Fri, Apr 19, 2024 at 02:06:30PM +0800, Huang, Ying wrote:
> Byungchul Park <byungchul@xxxxxx> writes:
>
> > The test envitonment:
> >
> > Architecture - x86_64
> > QEMU - kvm enabled, host cpu
>
> The test is run in VM? Do you have test results in bare metal
> environment?
I tested it in a bare metal server. See the result below.
> > Numa - 2 nodes (16 CPUs 1GB, no CPUs 99GB)
>
> The configuration looks quite abnormal. Have you tested with other
> configuration, such 1:4 or 1:8?
I tested with DRAM : CXL expander = 42GB : 98GB.
> > Linux Kernel - v6.9-rc4, numa balancing tiering on, demotion enabled
> >
> > < measurement: raw data - tlb and interrupt numbers >
> >
> > $ perf stat -a \
> > -e itlb.itlb_flush \
> > -e tlb_flush.dtlb_thread \
> > -e tlb_flush.stlb_any \
> > -e dtlb-load-misses \
> > -e dtlb-store-misses \
> > -e itlb-load-misses \
> > XSBench -t 16 -p 50000000
> >
> > $ grep "TLB shootdowns" /proc/interrupts
> >
> > BEFORE
> > ------
> > 40417078 itlb.itlb_flush
> > 234852566 tlb_flush.dtlb_thread
> > 153192357 tlb_flush.stlb_any
> > 119001107892 dTLB-load-misses
> > 307921167 dTLB-store-misses
> > 1355272118 iTLB-load-misses
> >
> > TLB: 1364803 1303670 1333921 1349607
> > 1356934 1354216 1332972 1342842
> > 1350265 1316443 1355928 1360793
> > 1298239 1326358 1343006 1340971
> > TLB shootdowns
> >
> > AFTER
> > -----
> > 3316495 itlb.itlb_flush
> > 138912511 tlb_flush.dtlb_thread
> > 115199341 tlb_flush.stlb_any
> > 117610390021 dTLB-load-misses
> > 198042233 dTLB-store-misses
> > 840066984 iTLB-load-misses
> >
> > TLB: 117257 119219 117178 115737
> > 117967 118948 117508 116079
> > 116962 117266 117320 117215
> > 105808 103934 115672 117610
> > TLB shootdowns
> >
> > < measurement: user experience - runtime >
> >
> > $ time XSBench -t 16 -p 50000000
> >
> > BEFORE
> > ------
> > Threads: 16
> > Runtime: 968.783 seconds
> > Lookups: 1,700,000,000
> > Lookups/s: 1,754,778
> >
> > 15208.91s user 141.44s system 1564% cpu 16:20.98 total
> >
> > AFTER
> > -----
> > Threads: 16
> > Runtime: 913.210 seconds
> > Lookups: 1,700,000,000
> > Lookups/s: 1,861,565
> >
> > 14351.69s user 138.23s system 1565% cpu 15:25.47 total
>
> IIUC, the memory footprint will be larger with the patchset. Do you
> have data?
As I already told you, from version 9, the footprint is exactly same
between patched kernel and vanilla kernel because that let folios go as
is, but controls TLB flush timing only.
There's two things to note.
1. I changed the patchset and will post the next version shortly:
BEFORE - Defer TLB flush required until the interesting folios
exiting either pcp or buddy. The interesting folios
are source folios unmapped during folio migration.
AFTER - Defer TLB flush required until the interesting folios
exiting either pcp or buddy. The interesting folios
are source folios unmapped during folio migration,
* plus, folios unmapped during reclaiming folios in
shrink_folio_list()*.
2. I changed workload for testing because XSBench doesn't struggle
against lack of memory in such a big server. Instead, I picked a
very real workload, LLM inference engine, llama.cpp.
I tested with the two changes. The test result is like:
---
Kernel version: mm-unstable around v6.9-rc4
Machine: bare metal, x86_64, Intel(R) Xeon(R) Gold 6430
CPU: 1 socket 64 core with hyper thread on
Numa: 2 nodes (64 CPUs DRAM 42GB, no CPUs CXL(expander) 98GB)
Config: swap off, numa balancing tiering on, demotion enabled
1 set of test workload:
echo 3 > /proc/sys/vm/drop_caches
llama.cpp/main -m $(70G_model1) -p "who are you?" -s 1 -t 15 -n 20 &
llama.cpp/main -m $(70G_model2) -p "who are you?" -s 1 -t 15 -n 20 &
llama.cpp/main -m $(70G_model3) -p "who are you?" -s 1 -t 15 -n 20 &
wait
where -t: nr of threads, -s: seed used to make the runtime stable,
-n: nr of tokens determinig the runtime, -p: prompt to ask, -m: LLM
model to use.
Run this set 10 times successively. So I got 30 total runtimes since
each inference prints its runtime at the end of each run. The result
is like:
BEFORE
------
llama_print_timings: total time = 1002461.95 ms / 24 tokens
llama_print_timings: total time = 1044978.38 ms / 24 tokens
llama_print_timings: total time = 1000653.09 ms / 24 tokens
llama_print_timings: total time = 1047104.80 ms / 24 tokens
llama_print_timings: total time = 1069430.36 ms / 24 tokens
llama_print_timings: total time = 1068201.16 ms / 24 tokens
llama_print_timings: total time = 1078092.59 ms / 24 tokens
llama_print_timings: total time = 1073200.45 ms / 24 tokens
llama_print_timings: total time = 1067136.00 ms / 24 tokens
llama_print_timings: total time = 1076442.56 ms / 24 tokens
llama_print_timings: total time = 1004142.64 ms / 24 tokens
llama_print_timings: total time = 1042942.65 ms / 24 tokens
llama_print_timings: total time = 999933.76 ms / 24 tokens
llama_print_timings: total time = 1046548.83 ms / 24 tokens
llama_print_timings: total time = 1068671.48 ms / 24 tokens
llama_print_timings: total time = 1068285.76 ms / 24 tokens
llama_print_timings: total time = 1077789.63 ms / 24 tokens
llama_print_timings: total time = 1071558.93 ms / 24 tokens
llama_print_timings: total time = 1066181.55 ms / 24 tokens
llama_print_timings: total time = 1076767.53 ms / 24 tokens
llama_print_timings: total time = 1004065.63 ms / 24 tokens
llama_print_timings: total time = 1044522.13 ms / 24 tokens
llama_print_timings: total time = 999725.33 ms / 24 tokens
llama_print_timings: total time = 1047510.77 ms / 24 tokens
llama_print_timings: total time = 1068010.27 ms / 24 tokens
llama_print_timings: total time = 1068999.31 ms / 24 tokens
llama_print_timings: total time = 1077648.05 ms / 24 tokens
llama_print_timings: total time = 1071378.96 ms / 24 tokens
llama_print_timings: total time = 1066326.32 ms / 24 tokens
llama_print_timings: total time = 1077088.92 ms / 24 tokens
AFTER
-----
llama_print_timings: total time = 988522.03 ms / 24 tokens
llama_print_timings: total time = 997204.52 ms / 24 tokens
llama_print_timings: total time = 996605.86 ms / 24 tokens
llama_print_timings: total time = 991985.50 ms / 24 tokens
llama_print_timings: total time = 1035143.31 ms / 24 tokens
llama_print_timings: total time = 993660.18 ms / 24 tokens
llama_print_timings: total time = 983082.14 ms / 24 tokens
llama_print_timings: total time = 990431.36 ms / 24 tokens
llama_print_timings: total time = 992707.09 ms / 24 tokens
llama_print_timings: total time = 992673.27 ms / 24 tokens
llama_print_timings: total time = 989285.43 ms / 24 tokens
llama_print_timings: total time = 996710.06 ms / 24 tokens
llama_print_timings: total time = 996534.64 ms / 24 tokens
llama_print_timings: total time = 991344.17 ms / 24 tokens
llama_print_timings: total time = 1035210.84 ms / 24 tokens
llama_print_timings: total time = 994714.13 ms / 24 tokens
llama_print_timings: total time = 984184.15 ms / 24 tokens
llama_print_timings: total time = 990909.45 ms / 24 tokens
llama_print_timings: total time = 991881.48 ms / 24 tokens
llama_print_timings: total time = 993918.03 ms / 24 tokens
llama_print_timings: total time = 990061.34 ms / 24 tokens
llama_print_timings: total time = 998076.69 ms / 24 tokens
llama_print_timings: total time = 997082.59 ms / 24 tokens
llama_print_timings: total time = 990677.58 ms / 24 tokens
llama_print_timings: total time = 1036054.94 ms / 24 tokens
llama_print_timings: total time = 994125.93 ms / 24 tokens
llama_print_timings: total time = 982467.01 ms / 24 tokens
llama_print_timings: total time = 990191.60 ms / 24 tokens
llama_print_timings: total time = 993319.24 ms / 24 tokens
llama_print_timings: total time = 992540.57 ms / 24 tokens
The difference of TLB shootdown(/proc/interrupts) is like:
BEFORE
------
TLB:
125553646 141418810 161932620 176853972 186655697 190399283
192143823 196414038 192872439 193313658 193395617 192521416
190788161 195067598 198016061 193607347 194293972 190786732
191545637 194856822 191801931 189634535 190399803 196365922
195268398 190115840 188050050 193194908 195317617 190820190
190164820 185556071 226797214 229592631 216112464 209909495
205575979 205950252 204948111 197999795 198892232 205287952
199344631 195015158 195869844 198858745 195692876 200961904
203463252 205921722 199850838 206145986 199613202 199961345
200129577 203020521 207873649 203697671 197093386 204243803
205993323 200934664 204193128 194435376 TLB shootdowns
AFTER
-----
TLB:
5648092 6610142 7032849 7882308 8088518 8352310
8656536 8705136 8647426 8905583 8985408 8704522
8884344 9026261 8929974 8869066 8877575 8810096
8770984 8754503 8801694 8865925 8787524 8656432
8755912 8682034 8773935 8832925 8797997 8515777
8481240 8891258 10595243 10285973 9756935 9573681
9398968 9069244 9242984 8899009 9310690 9029095
9069758 9105825 9092703 9270202 9460287 9258546
9180415 9232723 9270611 9175020 9490420 9360316
9420818 9057663 9525631 9310152 9152242 8654483
9181804 9050847 8919916 8883856 TLB shootdowns
The difference of 'perf stat' for tlb numbers during one set of test
with drop cache excluded is like:
BEFORE
------
3163679332 dTLB-load-misses
2017751856 dTLB-store-misses
327092903 iTLB-load-misses
1357543886 tlb:tlb_flush
AFTER
-----
2394694609 dTLB-load-misses
861144167 dTLB-store-misses
64055579 iTLB-load-misses
69175002 tlb:tlb_flush
---
I'm happy to share great results. I used a real workload that is super
popular these days, and got good results. I will post the next version
of the patchset shortly after organizing and refining things.
Byungchul