Re: [PATCH 12/15] clk: nuvoton: Add clock driver for ma35d1 clock controller

From: Ilpo Järvinen
Date: Thu Mar 16 2023 - 11:56:39 EST


On Wed, 15 Mar 2023, Jacky Huang wrote:

> From: Jacky Huang <ychuang3@xxxxxxxxxxx>
>
> The clock controller generates clocks for the whole chip, including
> system clocks and all peripheral clocks. This driver support ma35d1
> clock gating, divider, and individual PLL configuration.
>
> There are 6 PLLs in ma35d1 SoC:
> - CA-PLL for the two Cortex-A35 CPU clock
> - SYS-PLL for system bus, which comes from the companion MCU
> and cannot be programmed by clock controller.
> - DDR-PLL for DDR
> - EPLL for GMAC and GFX, Display, and VDEC IPs.
> - VPLL for video output pixel clock
> - APLL for SDHC, I2S audio, and other IPs.
> CA-PLL has only one operation mode.
> DDR-PLL, EPLL, VPLL, and APLL are advanced PLLs which have 3
> operation modes: integer mode, fraction mode, and spread specturm mode.
>
> Signed-off-by: Jacky Huang <ychuang3@xxxxxxxxxxx>
> ---
> drivers/clk/Makefile | 1 +
> drivers/clk/nuvoton/Makefile | 4 +
> drivers/clk/nuvoton/clk-ma35d1-divider.c | 144 ++++
> drivers/clk/nuvoton/clk-ma35d1-pll.c | 534 +++++++++++++
> drivers/clk/nuvoton/clk-ma35d1.c | 970 +++++++++++++++++++++++
> drivers/clk/nuvoton/clk-ma35d1.h | 198 +++++
> 6 files changed, 1851 insertions(+)
> create mode 100644 drivers/clk/nuvoton/Makefile
> create mode 100644 drivers/clk/nuvoton/clk-ma35d1-divider.c
> create mode 100644 drivers/clk/nuvoton/clk-ma35d1-pll.c
> create mode 100644 drivers/clk/nuvoton/clk-ma35d1.c
> create mode 100644 drivers/clk/nuvoton/clk-ma35d1.h
>
> diff --git a/drivers/clk/Makefile b/drivers/clk/Makefile
> index e3ca0d058a25..2e7916d269e1 100644
> --- a/drivers/clk/Makefile
> +++ b/drivers/clk/Makefile
> @@ -103,6 +103,7 @@ endif
> obj-y += mstar/
> obj-y += mvebu/
> obj-$(CONFIG_ARCH_MXS) += mxs/
> +obj-$(CONFIG_ARCH_NUVOTON) += nuvoton/
> obj-$(CONFIG_COMMON_CLK_NXP) += nxp/
> obj-$(CONFIG_COMMON_CLK_PISTACHIO) += pistachio/
> obj-$(CONFIG_COMMON_CLK_PXA) += pxa/
> diff --git a/drivers/clk/nuvoton/Makefile b/drivers/clk/nuvoton/Makefile
> new file mode 100644
> index 000000000000..d2c092541b8d
> --- /dev/null
> +++ b/drivers/clk/nuvoton/Makefile
> @@ -0,0 +1,4 @@
> +# SPDX-License-Identifier: GPL-2.0-only
> +obj-$(CONFIG_ARCH_NUVOTON) += clk-ma35d1.o
> +obj-$(CONFIG_ARCH_NUVOTON) += clk-ma35d1-divider.o
> +obj-$(CONFIG_ARCH_NUVOTON) += clk-ma35d1-pll.o
> diff --git a/drivers/clk/nuvoton/clk-ma35d1-divider.c b/drivers/clk/nuvoton/clk-ma35d1-divider.c
> new file mode 100644
> index 000000000000..5f4791531e47
> --- /dev/null
> +++ b/drivers/clk/nuvoton/clk-ma35d1-divider.c
> @@ -0,0 +1,144 @@
> +// SPDX-License-Identifier: GPL-2.0-only
> +/*
> + * Copyright (C) 2023 Nuvoton Technology Corp.
> + * Author: Chi-Fang Li <cfli0@xxxxxxxxxxx>
> + */
> +
> +#include <linux/clk-provider.h>
> +#include <linux/slab.h>
> +#include <linux/io.h>
> +#include <linux/err.h>
> +#include <linux/spinlock.h>
> +
> +#include "clk-ma35d1.h"
> +
> +#define div_mask(width) ((1 << (width)) - 1)
> +
> +struct ma35d1_adc_clk_divider {
> + struct clk_hw hw;
> + void __iomem *reg;
> + u8 shift;
> + u8 width;
> + u32 mask;
> + const struct clk_div_table *table;
> + spinlock_t *lock;

Add comment to indicate what it protects.

> +};
> +
> +#define to_ma35d1_adc_clk_divider(_hw) \
> + container_of(_hw, struct ma35d1_adc_clk_divider, hw)

static inline

> +static unsigned long ma35d1_clkdiv_recalc_rate(struct clk_hw *hw,
> + unsigned long parent_rate)
> +{
> + unsigned int val;
> + struct ma35d1_adc_clk_divider *dclk = to_ma35d1_adc_clk_divider(hw);
> +
> + val = readl_relaxed(dclk->reg) >> dclk->shift;
> + val &= div_mask(dclk->width);
> + val += 1;
> + return divider_recalc_rate(hw, parent_rate, val, dclk->table,
> + CLK_DIVIDER_ROUND_CLOSEST, dclk->width);
> +}
> +
> +static long ma35d1_clkdiv_round_rate(struct clk_hw *hw, unsigned long rate,
> + unsigned long *prate)
> +{
> + struct ma35d1_adc_clk_divider *dclk = to_ma35d1_adc_clk_divider(hw);
> +
> + return divider_round_rate(hw, rate, prate, dclk->table,
> + dclk->width, CLK_DIVIDER_ROUND_CLOSEST);
> +}
> +
> +static int ma35d1_clkdiv_set_rate(struct clk_hw *hw, unsigned long rate,
> + unsigned long parent_rate)
> +{
> + int value;
> + unsigned long flags = 0;
> + u32 data;
> + struct ma35d1_adc_clk_divider *dclk = to_ma35d1_adc_clk_divider(hw);
> +
> + value = divider_get_val(rate, parent_rate, dclk->table,
> + dclk->width, CLK_DIVIDER_ROUND_CLOSEST);
> +
> + if (dclk->lock)
> + spin_lock_irqsave(dclk->lock, flags);
> +
> + data = readl_relaxed(dclk->reg);
> + data &= ~(div_mask(dclk->width) << dclk->shift);
> + data |= (value - 1) << dclk->shift;
> + data |= dclk->mask;
> +
> + writel_relaxed(data, dclk->reg);
> +
> + if (dclk->lock)
> + spin_unlock_irqrestore(dclk->lock, flags);
> +
> + return 0;
> +}
> +
> +static const struct clk_ops ma35d1_adc_clkdiv_ops = {
> + .recalc_rate = ma35d1_clkdiv_recalc_rate,
> + .round_rate = ma35d1_clkdiv_round_rate,
> + .set_rate = ma35d1_clkdiv_set_rate,
> +};
> +
> +struct clk_hw *ma35d1_reg_adc_clkdiv(struct device *dev, const char *name,
> + const char *parent_name,
> + unsigned long flags, void __iomem *reg,
> + u8 shift, u8 width, u32 mask_bit)
> +{
> + struct ma35d1_adc_clk_divider *div;
> + struct clk_init_data init;
> + struct clk_div_table *table;
> + u32 max_div, min_div;
> + struct clk_hw *hw;
> + int ret;
> + int i;
> +
> + /* allocate the divider */
> + div = kzalloc(sizeof(*div), GFP_KERNEL);
> + if (!div)
> + return ERR_PTR(-ENOMEM);
> +
> + /* Init the divider table */
> + max_div = div_mask(width) + 1;
> + min_div = 1;
> +
> + table = kcalloc(max_div + 1, sizeof(*table), GFP_KERNEL);
> + if (!table) {
> + kfree(div);
> + return ERR_PTR(-ENOMEM);

Use rollback to do error handling:

ret = ERR_PTR(-ENOMEM);
goto free_div;

> + }
> +
> + for (i = 0; i < max_div; i++) {
> + table[i].val = (min_div + i);
> + table[i].div = 2 * table[i].val;
> + }
> + table[max_div].val = 0;
> + table[max_div].div = 0;
> +
> + init.name = name;
> + init.ops = &ma35d1_adc_clkdiv_ops;
> + init.flags |= flags;
> + init.parent_names = parent_name ? &parent_name : NULL;
> + init.num_parents = parent_name ? 1 : 0;
> +
> + /* struct ma35d1_adc_clk_divider assignments */
> + div->reg = reg;
> + div->shift = shift;
> + div->width = width;
> + div->mask = mask_bit ? BIT(mask_bit) : 0;
> + div->lock = &ma35d1_lock;
> + div->hw.init = &init;
> + div->table = table;
> +
> + /* Register the clock */
> + hw = &div->hw;
> + ret = clk_hw_register(NULL, hw);
> + if (ret) {
> + kfree(table);
> + kfree(div);
> + return ERR_PTR(ret);

ret = ERR_PTR(ret);
goto free_table;

> + }
> + return hw;

free_table:
kfree(table);
free_div:
kfree(div);
return ret;

> +}
> diff --git a/drivers/clk/nuvoton/clk-ma35d1-pll.c b/drivers/clk/nuvoton/clk-ma35d1-pll.c
> new file mode 100644
> index 000000000000..79e724b148fa
> --- /dev/null
> +++ b/drivers/clk/nuvoton/clk-ma35d1-pll.c
> @@ -0,0 +1,534 @@
> +// SPDX-License-Identifier: GPL-2.0-only
> +/*
> + * Copyright (C) 2023 Nuvoton Technology Corp.
> + * Author: Chi-Fang Li <cfli0@xxxxxxxxxxx>
> + */
> +
> +#include <linux/clk.h>
> +#include <linux/clk-provider.h>
> +#include <linux/io.h>
> +#include <linux/slab.h>
> +#include <linux/bitfield.h>
> +
> +#include "clk-ma35d1.h"
> +
> +#define to_ma35d1_clk_pll(clk) \
> + (container_of(clk, struct ma35d1_clk_pll, clk))

static inline

> +
> +#define PLL0CTL0_FBDIV_MSK GENMASK(7, 0)
> +#define PLL0CTL0_INDIV_MSK GENMASK(11, 8)
> +#define PLL0CTL0_OUTDIV_MSK GENMASK(13, 12)
> +#define PLL0CTL0_PD_MSK BIT(16)
> +#define PLL0CTL0_BP_MSK BIT(17)
> +#define PLLXCTL0_FBDIV_MSK GENMASK(10, 0)
> +#define PLLXCTL0_INDIV_MSK GENMASK(17, 12)
> +#define PLLXCTL0_MODE_MSK GENMASK(19, 18)
> +#define PLLXCTL0_SSRATE_MSK GENMASK(30, 20)
> +#define PLLXCTL1_PD_MSK BIT(0)
> +#define PLLXCTL1_BP_MSK BIT(1)
> +#define PLLXCTL1_OUTDIV_MSK GENMASK(6, 4)
> +#define PLLXCTL1_FRAC_MSK GENMASK(31, 8)
> +#define PLLXCTL2_SLOPE_MSK GENMASK(23, 0)
> +
> +struct ma35d1_clk_pll {
> + struct clk_hw hw;
> + u8 type;
> + u8 mode;
> + unsigned long rate;
> + void __iomem *ctl0_base;
> + void __iomem *ctl1_base;
> + void __iomem *ctl2_base;
> + struct regmap *regmap;
> +};
> +
> +struct vsipll_freq_conf_reg_tbl {
> + unsigned long freq;
> + u8 mode;
> + u32 ctl0_reg;
> + u32 ctl1_reg;
> + u32 ctl2_reg;
> +};
> +
> +static const struct vsipll_freq_conf_reg_tbl ma35d1pll_freq[] = {
> + { 1000000000, VSIPLL_INTEGER_MODE, 0x307d, 0x10, 0 },
> + { 884736000, VSIPLL_FRACTIONAL_MODE, 0x41024, 0xdd2f1b11, 0 },
> + { 533000000, VSIPLL_SS_MODE, 0x12b8102c, 0x6aaaab20, 0x12317 },
> + { }
> +};
> +
> +static void CLK_UnLockReg(struct ma35d1_clk_pll *pll)

Use lowercase only.

> +{
> + int ret;
> +
> + /* Unlock PLL registers */
> + do {
> + regmap_write(pll->regmap, REG_SYS_RLKTZNS, 0x59);
> + regmap_write(pll->regmap, REG_SYS_RLKTZNS, 0x16);
> + regmap_write(pll->regmap, REG_SYS_RLKTZNS, 0x88);
> + regmap_read(pll->regmap, REG_SYS_RLKTZNS, &ret);
> + } while (ret == 0);
> +}
> +
> +static void CLK_LockReg(struct ma35d1_clk_pll *pll)

Ditto.

> +{
> + /* Lock PLL registers */
> + regmap_write(pll->regmap, REG_SYS_RLKTZNS, 0x0);
> +}
> +
> +/* SMIC PLL for CAPLL */
> +unsigned long CLK_GetPLLFreq_SMICPLL(struct ma35d1_clk_pll *pll,
> + unsigned long PllSrcClk)

Lowercase only for function name and variable names. Please do the rest,
I won't mention more of them.

> +{
> + u32 u32M, u32N, u32P, u32OutDiv;
> + u32 val;
> + unsigned long u64PllClk;
> + u32 clk_div_table[] = { 1, 2, 4, 8};

Inconsistent whitespaces.

> +
> + val = __raw_readl(pll->ctl0_base);
> +
> + u32N = FIELD_GET(PLL0CTL0_FBDIV_MSK, val);
> + u32M = FIELD_GET(PLL0CTL0_INDIV_MSK, val);
> + u32P = FIELD_GET(PLL0CTL0_OUTDIV_MSK, val);
> + u32OutDiv = clk_div_table[u32P];
> +
> + if (val & PLL0CTL0_BP_MSK) {
> + u64PllClk = PllSrcClk;
> + } else {
> + u64PllClk = PllSrcClk * u32N;
> + do_div(u64PllClk, u32M * u32OutDiv);

Does this block depend on unsigned long being 64-bit? Or should you
enforce it by using u64 that is always same sized unlike unsigned long?

> + }
> + return u64PllClk;
> +}
> +
> +/* VSI-PLL: INTEGER_MODE */
> +unsigned long CLK_CalPLLFreq_Mode0(unsigned long PllSrcClk,
> + unsigned long u64PllFreq, u32 *u32Reg)
> +{
> + u32 u32TmpM, u32TmpN, u32TmpP;
> + u32 u32RngMinN, u32RngMinM, u32RngMinP;
> + u32 u32RngMaxN, u32RngMaxM, u32RngMaxP;
> + u32 u32Tmp, u32Min, u32MinN, u32MinM, u32MinP;

Remove types from names.

> + unsigned long u64PllClk;
> + unsigned long u64Con1, u64Con2, u64Con3;

Okay as unsigned long or do you want always 64-bit which is u64 ?

Define these inside the loops below and remove the types from the name.

> +
> + u64PllClk = 0;
> + u32Min = (u32) -1;
> +
> + if (!((u64PllFreq >= VSIPLL_FCLKO_MIN_FREQ) &&
> + (u64PllFreq <= VSIPLL_FCLKO_MAX_FREQ))) {
> + u32Reg[0] = ma35d1pll_freq[0].ctl0_reg;
> + u32Reg[1] = ma35d1pll_freq[0].ctl1_reg;
> + u64PllClk = ma35d1pll_freq[0].freq;
> + return u64PllClk;
> + }
> +
> + u32RngMinM = 1UL;
> + u32RngMaxM = 63UL;
> + u32RngMinM = ((PllSrcClk / VSIPLL_FREFDIVM_MAX_FREQ) > 1) ?
> + (PllSrcClk / VSIPLL_FREFDIVM_MAX_FREQ) : 1;

max(PllSrcClk / VSIPLL_FREFDIVM_MAX_FREQ, 1UL);

Remember to add include for it.

> + u32RngMaxM = ((PllSrcClk / VSIPLL_FREFDIVM_MIN_FREQ0) < u32RngMaxM) ?
> + (PllSrcClk / VSIPLL_FREFDIVM_MIN_FREQ0) : u32RngMaxM;

min();

> +
> + for (u32TmpM = u32RngMinM; u32TmpM < (u32RngMaxM + 1); u32TmpM++) {

<= and remove + 1

Why can't you call this loop cariable just m ?

> + u64Con1 = PllSrcClk / u32TmpM;
> + u32RngMinN = 16UL;
> + u32RngMaxN = 2047UL;

Why aren't these two values in defines?

> + u32RngMinN = ((VSIPLL_FCLK_MIN_FREQ / u64Con1) > u32RngMinN) ?
> + (VSIPLL_FCLK_MIN_FREQ / u64Con1) : u32RngMinN;

max();

> + u32RngMaxN = ((VSIPLL_FCLK_MAX_FREQ / u64Con1) < u32RngMaxN) ?
> + (VSIPLL_FCLK_MAX_FREQ / u64Con1) : u32RngMaxN;

min();

> +
> + for (u32TmpN = u32RngMinN; u32TmpN < (u32RngMaxN + 1);

<= and remove + 1

Name variable as n ?

> + u32TmpN++) {

One line.

> + u64Con2 = u64Con1 * u32TmpN;
> + u32RngMinP = 1UL;
> + u32RngMaxP = 7UL;

Limits to defines?

> + u32RngMinP = ((u64Con2 / VSIPLL_FCLKO_MAX_FREQ) > 1) ?
> + (u64Con2 / VSIPLL_FCLKO_MAX_FREQ) : 1;
> + u32RngMaxP = ((u64Con2 / VSIPLL_FCLKO_MIN_FREQ) <
> + u32RngMaxP) ?
> + (u64Con2 / VSIPLL_FCLKO_MIN_FREQ) :
> + u32RngMaxP;

min & max.

> + for (u32TmpP = u32RngMinP; u32TmpP < (u32RngMaxP + 1);

<= and remove +1?

Name variable as p?

> + u32TmpP++) {

One line.

> + u64Con3 = u64Con2 / u32TmpP;
> + if (u64Con3 > u64PllFreq)
> + u32Tmp = u64Con3 - u64PllFreq;
> + else
> + u32Tmp = u64PllFreq - u64Con3;

abs()?

> +
> + if (u32Tmp < u32Min) {
> + u32Min = u32Tmp;
> + u32MinM = u32TmpM;
> + u32MinN = u32TmpN;
> + u32MinP = u32TmpP;
> +
> + if (u32Min == 0UL) {

goto out?

> + u32Reg[0] = (u32MinM << 12) |
> + (u32MinN);
> + u32Reg[1] = (u32MinP << 4);
> + return ((PllSrcClk * u32MinN) /
> + (u32MinP * u32MinM));
> + }
> + }
> + }
> + }
> + }
> +

out: ?

> + u32Reg[0] = (u32MinM << 12) | (u32MinN);

FIELD_PREP() | FIELD_PREP() ?

> + u32Reg[1] = (u32MinP << 4);

FIELD_PREP() ?

> + u64PllClk = (PllSrcClk * u32MinN) / (u32MinP * u32MinM);

Use the 64-bit divide from math64.h rather than leave it up to compiler.

> + return u64PllClk;
> +}
> +
> +/* VSI-PLL: FRACTIONAL_MODE */
> +unsigned long CLK_CalPLLFreq_Mode1(unsigned long PllSrcClk,
> + unsigned long u64PllFreq, u32 *u32Reg)
> +{
> + unsigned long u64X, u64N, u64M, u64P, u64tmp;
> + unsigned long u64PllClk, u64FCLKO;
> + u32 u32FRAC;
> +
> + if (u64PllFreq > VSIPLL_FCLKO_MAX_FREQ) {
> + u32Reg[0] = ma35d1pll_freq[1].ctl0_reg;
> + u32Reg[1] = ma35d1pll_freq[1].ctl1_reg;
> + u64PllClk = ma35d1pll_freq[1].freq;
> + return u64PllClk;
> + }
> +
> + if (u64PllFreq > (VSIPLL_FCLKO_MIN_FREQ/(100-1))) {
> + u64FCLKO = u64PllFreq * ((VSIPLL_FCLKO_MIN_FREQ / u64PllFreq) +
> + ((VSIPLL_FCLKO_MIN_FREQ % u64PllFreq) ? 1 : 0));

You need to rework this to do 64-bit divide and remainder with
something that comes from math64.h.

> + } else {
> + pr_err("Failed to set rate %ld\n", u64PllFreq);
> + return 0;
> + }
> +
> + u64P = (u64FCLKO >= VSIPLL_FCLK_MIN_FREQ) ? 1 :
> + ((VSIPLL_FCLK_MIN_FREQ / u64FCLKO) +
> + ((VSIPLL_FCLK_MIN_FREQ % u64FCLKO) ? 1 : 0));

Ditto.

Is here some ...ROUND_UP() trick hidden too?

> +
> + if ((PllSrcClk > (VSIPLL_FREFDIVM_MAX_FREQ * (64-1))) ||
> + (PllSrcClk < VSIPLL_FREFDIVM_MIN_FREQ1))
> + return 0;
> +
> + u64M = (PllSrcClk <= VSIPLL_FREFDIVM_MAX_FREQ) ? 1 :
> + ((PllSrcClk / VSIPLL_FREFDIVM_MAX_FREQ) +
> + ((PllSrcClk % VSIPLL_FREFDIVM_MAX_FREQ) ? 1 : 0));

Ditto.

> +
> + u64tmp = (u64FCLKO * u64P * u64M * 1000) / PllSrcClk;
> + u64N = u64tmp / 1000;
> + u64X = u64tmp % 1000;

math64.h x 3 (or x2 since you can get remainder for free I think).

> + u32FRAC = ((u64X << 24) + 500) / 1000;
> + u64PllClk = (PllSrcClk * u64tmp) / u64P / u64M / 1000;
> +
> + u32Reg[0] = (u64M << 12) | (u64N);

FIELD_PREP() ?

> + u32Reg[1] = (u64P << 4) | (u32FRAC << 8);

FIELD_PREP() ?

> + return u64PllClk;
> +}
> +
> +/* VSI-PLL: SS_MODE */
> +unsigned long CLK_CalPLLFreq_Mode2(unsigned long PllSrcClk,
> + unsigned long u64PllFreq,
> + u32 u32SR, u32 u32Fmod, u32 *u32Reg)
> +{
> + unsigned long u64X, u64N, u64M, u64P, u64tmp, u64tmpP, u64tmpM;
> + unsigned long u64SSRATE, u64SLOPE, u64PllClk, u64FCLKO;
> + u32 u32FRAC, i;
> +
> + if (u64PllFreq >= VSIPLL_FCLKO_MAX_FREQ) {
> + u32Reg[0] = ma35d1pll_freq[2].ctl0_reg;
> + u32Reg[1] = ma35d1pll_freq[2].ctl1_reg;
> + u32Reg[2] = ma35d1pll_freq[2].ctl2_reg;
> + u64PllClk = ma35d1pll_freq[2].freq;
> + return u64PllClk;
> + }
> +
> + if (u64PllFreq < VSIPLL_FCLKO_MIN_FREQ) {
> + u64FCLKO = 0;
> + for (i = 2; i < 8; i++) {
> + u64tmp = (i * u64PllFreq);
> + if (u64tmp > VSIPLL_FCLKO_MIN_FREQ)

VSIPLL_FCLKO_MAX_FREQ check is not required ?

> + u64FCLKO = u64tmp;
> + }
> + if (u64FCLKO == 0) {
> + pr_err("Failed to set rate %ld\n", u64PllFreq);
> + return 0;
> + }
> +
> + } else
> + u64FCLKO = u64PllFreq;
> +
> + u64P = 0;
> + for (i = 1; i < 8; i++) {
> + u64tmpP = i * u64FCLKO;
> + if ((u64tmpP <= VSIPLL_FCLK_MAX_FREQ) &&
> + (u64tmpP >= VSIPLL_FCLK_MIN_FREQ)) {
> + u64P = i;
> + break;
> + }
> + }
> +
> + if (u64P == 0)
> + return 0;
> +
> + u64M = 0;
> + for (i = 1; i < 64; i++) {
> + u64tmpM = PllSrcClk / i;
> + if ((u64tmpM <= VSIPLL_FREFDIVM_MAX_FREQ) &&
> + (u64tmpM >= VSIPLL_FREFDIVM_MIN_FREQ1)) {
> + u64M = i;
> + break;
> + }
> + }
> +
> + if (u64M == 0)
> + return 0;
> +
> + u64tmp = (u64FCLKO * u64P * u64M * 1000) / PllSrcClk;
> + u64N = u64tmp / 1000;
> + u64X = u64tmp % 1000;
> + u32FRAC = ((u64X << 24) + 500) / 1000;
> +
> + u64SSRATE = ((PllSrcClk >> 1) / (u32Fmod * 2)) - 1;
> + u64SLOPE = ((u64tmp * u32SR / u64SSRATE) << 24) / 100 / 1000;
> +
> + u64PllClk = (PllSrcClk * u64tmp) / u64P / u64M / 1000;

Is some *SEC_PER_*SEC define relevant for 1000 ?

Or some other units, e.g., HZ related?

> +
> + u32Reg[0] = (u64SSRATE << VSIPLLCTL0_SSRATE_POS) | (u64M <<
> + VSIPLLCTL0_INDIV_POS) | (u64N);

FIELD_PREP()

> + u32Reg[1] = (u64P << VSIPLLCTL1_OUTDIV_POS) | (u32FRAC << VSIPLLCTL1_FRAC_POS);

Instead of _POS named variables, add GENMASK one instead and use
FIELD_PREP. You might need to use GENMASK_ULL() for the masks if you are
dealing with true 64-bitness here instead of the quasi unsigned longs.

> + u32Reg[2] = u64SLOPE;
> + return u64PllClk;
> +}
> +
> +unsigned long CLK_SetPLLFreq(struct ma35d1_clk_pll *pll,
> + unsigned long PllSrcClk,
> + unsigned long u64PllFreq)
> +{
> + u32 u32Reg[3] = { 0 }, val_ctl0, val_ctl1, val_ctl2;
> + unsigned long u64PllClk;
> +
> + val_ctl0 = __raw_readl(pll->ctl0_base);
> + val_ctl1 = __raw_readl(pll->ctl1_base);
> + val_ctl2 = __raw_readl(pll->ctl2_base);
> +
> + switch (pll->mode) {
> + case VSIPLL_INTEGER_MODE:
> + u64PllClk = CLK_CalPLLFreq_Mode0(PllSrcClk, u64PllFreq,
> + u32Reg);

One line.

> + val_ctl0 = u32Reg[0] |
> + (VSIPLL_INTEGER_MODE << VSIPLLCTL0_MODE_POS);

GENMASK() + FIELD_PREP()

> + break;
> + case VSIPLL_FRACTIONAL_MODE:
> + u64PllClk = CLK_CalPLLFreq_Mode1(PllSrcClk, u64PllFreq,
> + u32Reg);
> + val_ctl0 = u32Reg[0] |
> + (VSIPLL_FRACTIONAL_MODE << VSIPLLCTL0_MODE_POS);

Ditto.

> + break;
> + case VSIPLL_SS_MODE:
> + u64PllClk = CLK_CalPLLFreq_Mode2(PllSrcClk, u64PllFreq,
> + VSIPLL_MODULATION_FREQ,
> + VSIPLL_SPREAD_RANGE, u32Reg);
> + val_ctl0 = u32Reg[0] |
> + (VSIPLL_SS_MODE << VSIPLLCTL0_MODE_POS);

Ditto.

> + break;
> + }
> +
> + val_ctl1 = VSIPLLCTL1_PD_MSK | u32Reg[1];
> + val_ctl2 = u32Reg[2];
> +
> + __raw_writel(val_ctl0, pll->ctl0_base);
> + __raw_writel(val_ctl1, pll->ctl1_base);
> + __raw_writel(val_ctl2, pll->ctl2_base);
> + return u64PllClk;
> +}
> +
> +unsigned long CLK_GetPLLFreq_VSIPLL(struct ma35d1_clk_pll *pll,
> + unsigned long PllSrcClk)
> +{
> + u32 u32M, u32N, u32P, u32X, u32SR, u32FMOD;
> + u32 val_ctl0, val_ctl1, val_ctl2;
> + unsigned long u64PllClk, u64X;
> +
> + val_ctl0 = __raw_readl(pll->ctl0_base);
> + val_ctl1 = __raw_readl(pll->ctl1_base);
> + val_ctl2 = __raw_readl(pll->ctl2_base);
> +
> + if (val_ctl1 & PLLXCTL1_BP_MSK) {
> + u64PllClk = PllSrcClk;
> + return u64PllClk;
> + }
> +
> + if (pll->mode == VSIPLL_INTEGER_MODE) {
> + u32N = FIELD_GET(PLLXCTL0_FBDIV_MSK, val_ctl0);
> + u32M = FIELD_GET(PLLXCTL0_INDIV_MSK, val_ctl0);
> + u32P = FIELD_GET(PLLXCTL1_OUTDIV_MSK, val_ctl1);
> +
> + u64PllClk = PllSrcClk * u32N;
> + do_div(u64PllClk, u32M * u32P);
> +
> + } else if (pll->mode == VSIPLL_FRACTIONAL_MODE) {
> + u32N = FIELD_GET(PLLXCTL0_FBDIV_MSK, val_ctl0);
> + u32M = FIELD_GET(PLLXCTL0_INDIV_MSK, val_ctl0);
> + u32P = FIELD_GET(PLLXCTL1_OUTDIV_MSK, val_ctl1);
> + u32X = FIELD_GET(PLLXCTL1_FRAC_MSK, val_ctl1);
> + u64X = (u64) u32X;
> + u64X = (((u64X * 1000) + 500) >> 24);
> + u64PllClk = (PllSrcClk * ((u32N * 1000) + u64X)) /
> + 1000 / u32P / u32M;

math64.h

Please fix the remaining ones w/o me noting them down.

> +
> + } else {
> + u32N = FIELD_GET(PLLXCTL0_FBDIV_MSK, val_ctl0);
> + u32M = FIELD_GET(PLLXCTL0_INDIV_MSK, val_ctl0);
> + u32SR = FIELD_GET(PLLXCTL0_SSRATE_MSK, val_ctl0);
> + u32P = FIELD_GET(PLLXCTL1_OUTDIV_MSK, val_ctl1);
> + u32X = FIELD_GET(PLLXCTL1_FRAC_MSK, val_ctl1);
> + u32FMOD = FIELD_GET(PLLXCTL2_SLOPE_MSK, val_ctl2);
> + u64X = (u64) u32X;
> + u64X = ((u64X * 1000) >> 24);
> + u64PllClk = (PllSrcClk * ((u32N * 1000) + u64X)) /
> + 1000 / u32P / u32M;
> + }
> + return u64PllClk;
> +}
> +
> +static int ma35d1_clk_pll_set_rate(struct clk_hw *hw, unsigned long rate,
> + unsigned long parent_rate)
> +{
> + struct ma35d1_clk_pll *pll = to_ma35d1_clk_pll(hw);
> +
> + if ((parent_rate < VSIPLL_FREF_MIN_FREQ) ||
> + (parent_rate > VSIPLL_FREF_MAX_FREQ))
> + return 0;
> +
> + if ((pll->type == MA35D1_CAPLL) || (pll->type == MA35D1_DDRPLL)) {
> + pr_warn("Nuvoton MA35D1 CAPLL/DDRPLL is read only.\n");
> + return -EACCES;
> + }
> + CLK_UnLockReg(pll);
> + pll->rate = CLK_SetPLLFreq(pll, parent_rate, rate);
> + CLK_LockReg(pll);
> + return 0;
> +}
> +
> +static unsigned long ma35d1_clk_pll_recalc_rate(struct clk_hw *hw,
> + unsigned long parent_rate)
> +{
> + unsigned long pllfreq;
> + struct ma35d1_clk_pll *pll = to_ma35d1_clk_pll(hw);
> +
> + if ((parent_rate < VSIPLL_FREF_MIN_FREQ)
> + || (parent_rate > VSIPLL_FREF_MAX_FREQ))
> + return 0;
> +
> + switch (pll->type) {
> + case MA35D1_CAPLL:
> + pllfreq = CLK_GetPLLFreq_SMICPLL(pll, parent_rate);
> + break;
> + case MA35D1_DDRPLL:
> + case MA35D1_APLL:
> + case MA35D1_EPLL:
> + case MA35D1_VPLL:
> + pllfreq = CLK_GetPLLFreq_VSIPLL(pll, parent_rate);
> + break;
> + }
> +
> + return pllfreq;
> +}
> +
> +static long ma35d1_clk_pll_round_rate(struct clk_hw *hw, unsigned long rate,
> + unsigned long *prate)
> +{
> + return rate;
> +}
> +
> +static int ma35d1_clk_pll_is_prepared(struct clk_hw *hw)
> +{
> + struct ma35d1_clk_pll *pll = to_ma35d1_clk_pll(hw);
> + u32 val = __raw_readl(pll->ctl1_base);
> +
> + return (val & VSIPLLCTL1_PD_MSK) ? 0 : 1;

Unnecessary parenthesis

> +}
> +
> +static int ma35d1_clk_pll_prepare(struct clk_hw *hw)
> +{
> + struct ma35d1_clk_pll *pll = to_ma35d1_clk_pll(hw);
> + u32 val;
> +
> + if ((pll->type == MA35D1_CAPLL) || (pll->type == MA35D1_DDRPLL)) {
> + pr_warn("Nuvoton MA35D1 CAPLL/DDRPLL is read only.\n");
> + return -EACCES;
> + }

Add helper for this, there is more than 1 copy of this.

> +
> + CLK_UnLockReg(pll);
> + val = __raw_readl(pll->ctl1_base);
> + val &= ~VSIPLLCTL1_PD_MSK;
> + __raw_writel(val, pll->ctl1_base);
> + CLK_LockReg(pll);
> + return 0;
> +}
> +
> +static void ma35d1_clk_pll_unprepare(struct clk_hw *hw)
> +{
> + struct ma35d1_clk_pll *pll = to_ma35d1_clk_pll(hw);
> + u32 val;
> +
> + if ((pll->type == MA35D1_CAPLL) || (pll->type == MA35D1_DDRPLL)) {
> + pr_warn("Nuvoton MA35D1 CAPLL/DDRPLL is read only.\n");
> + } else {
> + val = __raw_readl(pll->ctl1_base);
> + val |= VSIPLLCTL1_PD_MSK;
> + __raw_writel(val, pll->ctl1_base);
> + }
> +}
> +
> +static const struct clk_ops ma35d1_clk_pll_ops = {
> + .is_prepared = ma35d1_clk_pll_is_prepared,
> + .prepare = ma35d1_clk_pll_prepare,
> + .unprepare = ma35d1_clk_pll_unprepare,
> + .set_rate = ma35d1_clk_pll_set_rate,
> + .recalc_rate = ma35d1_clk_pll_recalc_rate,
> + .round_rate = ma35d1_clk_pll_round_rate,
> +};
> +
> +struct clk_hw *ma35d1_reg_clk_pll(enum ma35d1_pll_type type,
> + u8 u8mode, const char *name,
> + const char *parent,
> + unsigned long targetFreq,
> + void __iomem *base,
> + struct regmap *regmap)
> +{
> + struct ma35d1_clk_pll *pll;
> + struct clk_hw *hw;
> + struct clk_init_data init;
> + int ret;
> +
> + pll = kmalloc(sizeof(*pll), GFP_KERNEL);
> + if (!pll)
> + return ERR_PTR(-ENOMEM);
> +
> + pll->type = type;
> + pll->mode = u8mode;
> + pll->rate = targetFreq;
> + pll->ctl0_base = base + VSIPLL_CTL0;
> + pll->ctl1_base = base + VSIPLL_CTL1;
> + pll->ctl2_base = base + VSIPLL_CTL2;
> + pll->regmap = regmap;
> +
> + init.name = name;
> + init.flags = 0;
> + init.parent_names = &parent;
> + init.num_parents = 1;
> + init.ops = &ma35d1_clk_pll_ops;
> + pll->hw.init = &init;
> + hw = &pll->hw;
> +
> + ret = clk_hw_register(NULL, hw);
> + if (ret) {
> + pr_err("failed to register vsi-pll clock!!!\n");

No need to use ! let alone 3 of them.

> + kfree(pll);
> + return ERR_PTR(ret);
> + }
> + return hw;
> +}
> diff --git a/drivers/clk/nuvoton/clk-ma35d1.c b/drivers/clk/nuvoton/clk-ma35d1.c
> new file mode 100644
> index 000000000000..ac8154458b81
> --- /dev/null
> +++ b/drivers/clk/nuvoton/clk-ma35d1.c
> @@ -0,0 +1,970 @@
> +// SPDX-License-Identifier: GPL-2.0-only
> +/*
> + * Copyright (C) 2023 Nuvoton Technology Corp.
> + * Author: Chi-Fang Li <cfli0@xxxxxxxxxxx>
> + */
> +
> +#include <linux/clk.h>
> +#include <linux/clk-provider.h>
> +#include <linux/clkdev.h>
> +#include <linux/io.h>
> +#include <linux/module.h>
> +#include <linux/of.h>
> +#include <linux/of_address.h>
> +#include <linux/platform_device.h>
> +#include <linux/spinlock.h>
> +#include <dt-bindings/clock/nuvoton,ma35d1-clk.h>
> +
> +#include "clk-ma35d1.h"
> +
> +DEFINE_SPINLOCK(ma35d1_lock);
> +
> +static const char *const ca35clk_sel_clks[] = {
> + "hxt", "capll", "ddrpll", "dummy"
> +};
> +
> +static const char *const sysclk0_sel_clks[] = {
> + "epll_div2", "syspll"
> +};
> +
> +static const char *const sysclk1_sel_clks[] = {
> + "hxt", "syspll"
> +};
> +
> +static const char *const axiclk_sel_clks[] = {
> + "capll_div2", "capll_div4"
> +};
> +
> +static const char *const ccap_sel_clks[] = {
> + "hxt", "vpll", "apll", "syspll"
> +};
> +
> +static const char *const sdh_sel_clks[] = {
> + "syspll", "apll", "dummy", "dummy"
> +};
> +
> +static const char *const dcu_sel_clks[] = {
> + "epll_div2", "syspll"
> +};
> +
> +static const char *const gfx_sel_clks[] = {
> + "epll", "syspll"
> +};
> +
> +static const char *const dbg_sel_clks[] = {
> + "hirc", "syspll"
> +};
> +
> +static const char *const timer0_sel_clks[] = {
> + "hxt", "lxt", "pclk0", "dummy", "dummy", "lirc", "dummy", "hirc"
> +};
> +
> +static const char *const timer1_sel_clks[] = {
> + "hxt", "lxt", "pclk0", "dummy", "dummy", "lirc", "dummy", "hirc"
> +};
> +
> +static const char *const timer2_sel_clks[] = {
> + "hxt", "lxt", "pclk1", "dummy", "dummy", "lirc", "dummy", "hirc"
> +};
> +
> +static const char *const timer3_sel_clks[] = {
> + "hxt", "lxt", "pclk1", "dummy", "dummy", "lirc", "dummy", "hirc"
> +};
> +
> +static const char *const timer4_sel_clks[] = {
> + "hxt", "lxt", "pclk2", "dummy", "dummy", "lirc", "dummy", "hirc"
> +};
> +
> +static const char *const timer5_sel_clks[] = {
> + "hxt", "lxt", "pclk2", "dummy", "dummy", "lirc", "dummy", "hirc"
> +};
> +
> +static const char *const timer6_sel_clks[] = {
> + "hxt", "lxt", "pclk0", "dummy", "dummy", "lirc", "dummy", "hirc"
> +};
> +
> +static const char *const timer7_sel_clks[] = {
> + "hxt", "lxt", "pclk0", "dummy", "dummy", "lirc", "dummy", "hirc"
> +};
> +
> +static const char *const timer8_sel_clks[] = {
> + "hxt", "lxt", "pclk1", "dummy", "dummy", "lirc", "dummy", "hirc"
> +};
> +
> +static const char *const timer9_sel_clks[] = {
> + "hxt", "lxt", "pclk1", "dummy", "dummy", "lirc", "dummy", "hirc"
> +};
> +
> +static const char *const timer10_sel_clks[] = {
> + "hxt", "lxt", "pclk2", "dummy", "dummy", "lirc", "dummy", "hirc"
> +};
> +
> +static const char *const timer11_sel_clks[] = {
> + "hxt", "lxt", "pclk2", "dummy", "dummy", "lirc", "dummy", "hirc"
> +};
> +
> +static const char *const uart_sel_clks[] = {
> + "hxt", "sysclk1_div2", "dummy", "dummy"
> +};
> +
> +static const char *const wdt0_sel_clks[] = {
> + "dummy", "lxt", "pclk3_div4096", "lirc"
> +};
> +
> +static const char *const wdt1_sel_clks[] = {
> + "dummy", "lxt", "pclk3_div4096", "lirc"
> +};
> +
> +static const char *const wdt2_sel_clks[] = {
> + "dummy", "lxt", "pclk4_div4096", "lirc"
> +};
> +
> +static const char *const wwdt0_sel_clks[] = {
> + "dummy", "dummy", "pclk3_div4096", "lirc"
> +};
> +
> +static const char *const wwdt1_sel_clks[] = {
> + "dummy", "dummy", "pclk3_div4096", "lirc"
> +};
> +
> +static const char *const wwdt2_sel_clks[] = {
> + "dummy", "dummy", "pclk4_div4096", "lirc"
> +};
> +
> +static const char *const spi0_sel_clks[] = {
> + "pclk1", "apll", "dummy", "dummy"
> +};
> +
> +static const char *const spi1_sel_clks[] = {
> + "pclk2", "apll", "dummy", "dummy"
> +};
> +
> +static const char *const spi2_sel_clks[] = {
> + "pclk1", "apll", "dummy", "dummy"
> +};
> +
> +static const char *const spi3_sel_clks[] = {
> + "pclk2", "apll", "dummy", "dummy"
> +};
> +
> +static const char *const qspi0_sel_clks[] = {
> + "pclk0", "apll", "dummy", "dummy"
> +};
> +
> +static const char *const qspi1_sel_clks[] = {
> + "pclk0", "apll", "dummy", "dummy"
> +};
> +
> +static const char *const i2s0_sel_clks[] = {
> + "apll", "sysclk1_div2", "dummy", "dummy"
> +};
> +
> +static const char *const i2s1_sel_clks[] = {
> + "apll", "sysclk1_div2", "dummy", "dummy"
> +};
> +
> +static const char *const can_sel_clks[] = {
> + "apll", "vpll"
> +};
> +
> +static const char *const cko_sel_clks[] = {
> + "hxt", "lxt", "hirc", "lirc", "capll_div4", "syspll",
> + "ddrpll", "epll_div2", "apll", "vpll", "dummy", "dummy",
> + "dummy", "dummy", "dummy", "dummy"
> +};
> +
> +static const char *const smc_sel_clks[] = {
> + "hxt", "pclk4"
> +};
> +
> +static const char *const kpi_sel_clks[] = {
> + "hxt", "lxt"
> +};
> +
> +static const struct clk_div_table ip_div_table[] = {
> + {0, 2}, {1, 4}, {2, 6}, {3, 8}, {4, 10},
> + {5, 12}, {6, 14}, {7, 16}, {0, 0},
> +};
> +
> +static const struct clk_div_table eadc_div_table[] = {
> + {0, 2}, {1, 4}, {2, 6}, {3, 8}, {4, 10},
> + {5, 12}, {6, 14}, {7, 16}, {8, 18},
> + {9, 20}, {10, 22}, {11, 24}, {12, 26},
> + {13, 28}, {14, 30}, {15, 32}, {0, 0},
> +};
> +
> +static struct clk_hw **hws;
> +static struct clk_hw_onecell_data *ma35d1_hw_data;
> +
> +static int ma35d1_clocks_probe(struct platform_device *pdev)
> +{
> + int ret;
> + struct device *dev = &pdev->dev;
> + struct device_node *clk_node = dev->of_node;
> + void __iomem *clk_base;
> + struct regmap *regmap;
> + u32 pllmode[5] = { 0, 0, 0, 0, 0 };
> + u32 pllfreq[5] = { 0, 0, 0, 0, 0 };
> +
> + dev_info(&pdev->dev, "Nuvoton MA35D1 Clock Driver\n");
> + ma35d1_hw_data = devm_kzalloc(&pdev->dev, struct_size(ma35d1_hw_data,
> + hws, CLK_MAX_IDX), GFP_KERNEL);
> +
> + if (WARN_ON(!ma35d1_hw_data))
> + return -ENOMEM;
> +
> + ma35d1_hw_data->num = CLK_MAX_IDX;
> + hws = ma35d1_hw_data->hws;
> +
> + clk_node = of_find_compatible_node(NULL, NULL, "nuvoton,ma35d1-clk");
> + clk_base = of_iomap(clk_node, 0);
> + of_node_put(clk_node);
> + if (!clk_base) {
> + pr_err("%s: could not map region\n", __func__);
> + return -ENOMEM;
> + }
> + regmap = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
> + "nuvoton,sys");
> + if (IS_ERR(regmap))
> + pr_warn("%s: Unable to get syscon\n", __func__);

Don't print __func__ to user.

> +
> + /* clock sources */
> + hws[HXT] = ma35d1_clk_fixed("hxt", 24000000);
> + hws[HXT_GATE] = ma35d1_clk_gate("hxt_gate", "hxt",
> + clk_base + REG_CLK_PWRCTL, 0);
> + hws[LXT] = ma35d1_clk_fixed("lxt", 32768);
> + hws[LXT_GATE] = ma35d1_clk_gate("lxt_gate", "lxt",
> + clk_base + REG_CLK_PWRCTL, 1);
> + hws[HIRC] = ma35d1_clk_fixed("hirc", 12000000);
> + hws[HIRC_GATE] = ma35d1_clk_gate("hirc_gate", "hirc",
> + clk_base + REG_CLK_PWRCTL, 2);
> + hws[LIRC] = ma35d1_clk_fixed("lirc", 32000);
> + hws[LIRC_GATE] = ma35d1_clk_gate("lirc_gate", "lirc",
> + clk_base + REG_CLK_PWRCTL, 3);
> +
> + /* PLL */
> + of_property_read_u32_array(clk_node, "clock-pll-mode", pllmode,
> + ARRAY_SIZE(pllmode));
> + of_property_read_u32_array(clk_node, "assigned-clock-rates", pllfreq,
> + ARRAY_SIZE(pllfreq));
> +
> + /* SMIC PLL */
> + hws[CAPLL] = ma35d1_reg_clk_pll(MA35D1_CAPLL, pllmode[0], "capll",
> + "hxt", pllfreq[0],
> + clk_base + REG_CLK_PLL0CTL0, regmap);
> + hws[SYSPLL] = ma35d1_clk_fixed("syspll", 180000000);
> +
> + /* VSI PLL */
> + hws[DDRPLL] = ma35d1_reg_clk_pll(MA35D1_DDRPLL, pllmode[1], "ddrpll",
> + "hxt", pllfreq[1],
> + clk_base + REG_CLK_PLL2CTL0, regmap);
> + hws[APLL] = ma35d1_reg_clk_pll(MA35D1_APLL, pllmode[2], "apll", "hxt",
> + pllfreq[2], clk_base + REG_CLK_PLL3CTL0,
> + regmap);
> + hws[EPLL] = ma35d1_reg_clk_pll(MA35D1_EPLL, pllmode[3], "epll", "hxt",
> + pllfreq[3], clk_base + REG_CLK_PLL4CTL0,
> + regmap);
> + hws[VPLL] = ma35d1_reg_clk_pll(MA35D1_VPLL, pllmode[4], "vpll", "hxt",
> + pllfreq[4], clk_base + REG_CLK_PLL5CTL0,
> + regmap);
> + hws[EPLL_DIV2] = ma35d1_clk_fixed_factor("epll_div2", "epll", 1, 2);
> + hws[EPLL_DIV4] = ma35d1_clk_fixed_factor("epll_div4", "epll", 1, 4);
> + hws[EPLL_DIV8] = ma35d1_clk_fixed_factor("epll_div8", "epll", 1, 8);
> +
> + /* CA35 */
> + hws[CA35CLK_MUX] = ma35d1_clk_mux("ca35clk_mux",
> + clk_base + REG_CLK_CLKSEL0, 0,
> + 2, ca35clk_sel_clks,
> + ARRAY_SIZE(ca35clk_sel_clks));
> +
> + /* AXI */
> + hws[AXICLK_DIV2] = ma35d1_clk_fixed_factor("capll_div2", "ca35clk_mux",
> + 1, 2);
> + hws[AXICLK_DIV4] = ma35d1_clk_fixed_factor("capll_div4", "ca35clk_mux",
> + 1, 4);
> + hws[AXICLK_MUX] = ma35d1_clk_mux("axiclk_mux",
> + clk_base + REG_CLK_CLKDIV0,
> + 26, 1, axiclk_sel_clks,
> + ARRAY_SIZE(axiclk_sel_clks));
> +
> + /* SYSCLK0 & SYSCLK1 */
> + hws[SYSCLK0_MUX] = ma35d1_clk_mux("sysclk0_mux",
> + clk_base + REG_CLK_CLKSEL0,
> + 2, 1, sysclk0_sel_clks,
> + ARRAY_SIZE(sysclk0_sel_clks));
> + hws[SYSCLK1_MUX] = ma35d1_clk_mux("sysclk1_mux",
> + clk_base + REG_CLK_CLKSEL0,
> + 4, 1, sysclk1_sel_clks,
> + ARRAY_SIZE(sysclk1_sel_clks));
> + hws[SYSCLK1_DIV2] = ma35d1_clk_fixed_factor("sysclk1_div2",
> + "sysclk1_mux", 1, 2);
> +
> + /* HCLK0~3 & PCLK0~4 */
> + hws[HCLK0] = ma35d1_clk_fixed_factor("hclk0", "sysclk1_mux", 1, 1);
> + hws[HCLK1] = ma35d1_clk_fixed_factor("hclk1", "sysclk1_mux", 1, 1);
> + hws[HCLK2] = ma35d1_clk_fixed_factor("hclk2", "sysclk1_mux", 1, 1);
> + hws[PCLK0] = ma35d1_clk_fixed_factor("pclk0", "sysclk1_mux", 1, 1);
> + hws[PCLK1] = ma35d1_clk_fixed_factor("pclk1", "sysclk1_mux", 1, 1);
> + hws[PCLK2] = ma35d1_clk_fixed_factor("pclk2", "sysclk1_mux", 1, 1);
> +
> + hws[HCLK3] = ma35d1_clk_fixed_factor("hclk3", "sysclk1_mux", 1, 2);
> + hws[PCLK3] = ma35d1_clk_fixed_factor("pclk3", "sysclk1_mux", 1, 2);
> + hws[PCLK4] = ma35d1_clk_fixed_factor("pclk4", "sysclk1_mux", 1, 2);
> +
> + hws[USBPHY0] = ma35d1_clk_fixed("usbphy0", 480000000);
> + hws[USBPHY1] = ma35d1_clk_fixed("usbphy1", 480000000);
> +
> + /* DDR */
> + hws[DDR0_GATE] = ma35d1_clk_gate("ddr0_gate", "ddrpll",
> + clk_base + REG_CLK_SYSCLK0, 4);
> + hws[DDR6_GATE] = ma35d1_clk_gate("ddr6_gate", "ddrpll",
> + clk_base + REG_CLK_SYSCLK0, 5);
> +
> + /* CAN0 */
> + hws[CAN0_MUX] = ma35d1_clk_mux("can0_mux", clk_base + REG_CLK_CLKSEL4,
> + 16, 1, can_sel_clks,
> + ARRAY_SIZE(can_sel_clks));
> + hws[CAN0_DIV] = ma35d1_clk_divider_table("can0_div", "can0_mux",
> + clk_base + REG_CLK_CLKDIV0,
> + 0, 3, ip_div_table);
> + hws[CAN0_GATE] = ma35d1_clk_gate("can0_gate", "can0_div",
> + clk_base + REG_CLK_SYSCLK0, 8);
> +
> + /* CAN1 */
> + hws[CAN1_MUX] = ma35d1_clk_mux("can1_mux", clk_base + REG_CLK_CLKSEL4,
> + 17, 1, can_sel_clks,
> + ARRAY_SIZE(can_sel_clks));
> + hws[CAN1_DIV] = ma35d1_clk_divider_table("can1_div", "can1_mux",
> + clk_base + REG_CLK_CLKDIV0,
> + 4, 3, ip_div_table);
> + hws[CAN1_GATE] = ma35d1_clk_gate("can1_gate", "can1_div",
> + clk_base + REG_CLK_SYSCLK0, 9);
> +
> + /* CAN2 */
> + hws[CAN2_MUX] = ma35d1_clk_mux("can2_mux", clk_base + REG_CLK_CLKSEL4,
> + 18, 1, can_sel_clks,
> + ARRAY_SIZE(can_sel_clks));
> + hws[CAN2_DIV] = ma35d1_clk_divider_table("can2_div", "can2_mux",
> + clk_base + REG_CLK_CLKDIV0,
> + 8, 3, ip_div_table);
> + hws[CAN2_GATE] = ma35d1_clk_gate("can2_gate", "can2_div",
> + clk_base + REG_CLK_SYSCLK0, 10);
> +
> + /* CAN3 */
> + hws[CAN3_MUX] = ma35d1_clk_mux("can3_mux", clk_base + REG_CLK_CLKSEL4,
> + 19, 1, can_sel_clks,
> + ARRAY_SIZE(can_sel_clks));
> + hws[CAN3_DIV] = ma35d1_clk_divider_table("can3_div", "can3_mux",
> + clk_base + REG_CLK_CLKDIV0,
> + 12, 3, ip_div_table);
> + hws[CAN3_GATE] = ma35d1_clk_gate("can3_gate", "can3_div",
> + clk_base + REG_CLK_SYSCLK0, 11);
> +
> + /* SDH0 */
> + hws[SDH0_MUX] = ma35d1_clk_mux("sdh0_mux", clk_base + REG_CLK_CLKSEL0,
> + 16, 2, sdh_sel_clks,
> + ARRAY_SIZE(sdh_sel_clks));
> + hws[SDH0_GATE] = ma35d1_clk_gate("sdh0_gate", "sdh0_mux",
> + clk_base + REG_CLK_SYSCLK0, 16);
> +
> + /* SDH1 */
> + hws[SDH1_MUX] = ma35d1_clk_mux("sdh1_mux", clk_base + REG_CLK_CLKSEL0,
> + 18, 2, sdh_sel_clks,
> + ARRAY_SIZE(sdh_sel_clks));
> + hws[SDH1_GATE] = ma35d1_clk_gate("sdh1_gate", "sdh1_mux",
> + clk_base + REG_CLK_SYSCLK0, 17);
> +
> + /* NAND */
> + hws[NAND_GATE] = ma35d1_clk_gate("nand_gate", "hclk1",
> + clk_base + REG_CLK_SYSCLK0, 18);
> +
> + /* USB */
> + hws[USBD_GATE] = ma35d1_clk_gate("usbd_gate", "usbphy0",
> + clk_base + REG_CLK_SYSCLK0, 19);
> + hws[USBH_GATE] = ma35d1_clk_gate("usbh_gate", "usbphy0",
> + clk_base + REG_CLK_SYSCLK0, 20);
> + hws[HUSBH0_GATE] = ma35d1_clk_gate("husbh0_gate", "usbphy0",
> + clk_base + REG_CLK_SYSCLK0, 21);
> + hws[HUSBH1_GATE] = ma35d1_clk_gate("husbh1_gate", "usbphy0",
> + clk_base + REG_CLK_SYSCLK0, 22);
> +
> + /* GFX */
> + hws[GFX_MUX] = ma35d1_clk_mux("gfx_mux", clk_base + REG_CLK_CLKSEL0,
> + 26, 1, gfx_sel_clks,
> + ARRAY_SIZE(gfx_sel_clks));
> + hws[GFX_GATE] = ma35d1_clk_gate("gfx_gate", "gfx_mux",
> + clk_base + REG_CLK_SYSCLK0, 24);
> +
> + /* VC8K */
> + hws[VC8K_GATE] = ma35d1_clk_gate("vc8k_gate", "sysclk0_mux",
> + clk_base + REG_CLK_SYSCLK0, 25);
> +
> + /* DCU */
> + hws[DCU_MUX] = ma35d1_clk_mux("dcu_mux", clk_base + REG_CLK_CLKSEL0,
> + 24, 1, dcu_sel_clks,
> + ARRAY_SIZE(dcu_sel_clks));
> + hws[DCU_GATE] = ma35d1_clk_gate("dcu_gate", "dcu_mux",
> + clk_base + REG_CLK_SYSCLK0, 26);
> +
> + /* DCUP */
> + hws[DCUP_DIV] = ma35d1_clk_divider_table("dcup_div", "vpll",
> + clk_base + REG_CLK_CLKDIV0,
> + 16, 3, ip_div_table);
> +
> + /* EMAC0 */
> + hws[EMAC0_GATE] = ma35d1_clk_gate("emac0_gate", "epll_div2",
> + clk_base + REG_CLK_SYSCLK0, 27);
> +
> + /* EMAC1 */
> + hws[EMAC1_GATE] = ma35d1_clk_gate("emac1_gate", "epll_div2",
> + clk_base + REG_CLK_SYSCLK0, 28);
> +
> + /* CCAP0 */
> + hws[CCAP0_MUX] = ma35d1_clk_mux("ccap0_mux",
> + clk_base + REG_CLK_CLKSEL0,
> + 12, 1, ccap_sel_clks,
> + ARRAY_SIZE(ccap_sel_clks));
> + hws[CCAP0_DIV] = ma35d1_clk_divider("ccap0_div", "ccap0_mux",
> + clk_base + REG_CLK_CLKDIV1, 8, 4);
> + hws[CCAP0_GATE] = ma35d1_clk_gate("ccap0_gate", "ccap0_div",
> + clk_base + REG_CLK_SYSCLK0, 29);
> +
> + /* CCAP1 */
> + hws[CCAP1_MUX] = ma35d1_clk_mux("ccap1_mux",
> + clk_base + REG_CLK_CLKSEL0,
> + 14, 1, ccap_sel_clks,
> + ARRAY_SIZE(ccap_sel_clks));
> + hws[CCAP1_DIV] = ma35d1_clk_divider("ccap1_div", "ccap1_mux",
> + clk_base + REG_CLK_CLKDIV1,
> + 12, 4);
> + hws[CCAP1_GATE] = ma35d1_clk_gate("ccap1_gate", "ccap1_div",
> + clk_base + REG_CLK_SYSCLK0, 30);
> +
> + /* PDMA0~3 */
> + hws[PDMA0_GATE] = ma35d1_clk_gate("pdma0_gate", "hclk0",
> + clk_base + REG_CLK_SYSCLK1, 0);
> + hws[PDMA1_GATE] = ma35d1_clk_gate("pdma1_gate", "hclk0",
> + clk_base + REG_CLK_SYSCLK1, 1);
> + hws[PDMA2_GATE] = ma35d1_clk_gate("pdma2_gate", "hclk0",
> + clk_base + REG_CLK_SYSCLK1, 2);
> + hws[PDMA3_GATE] = ma35d1_clk_gate("pdma3_gate", "hclk0",
> + clk_base + REG_CLK_SYSCLK1, 3);
> +
> + /* WH0~1 */
> + hws[WH0_GATE] = ma35d1_clk_gate("wh0_gate", "hclk0",
> + clk_base + REG_CLK_SYSCLK1, 4);
> + hws[WH1_GATE] = ma35d1_clk_gate("wh1_gate", "hclk0",
> + clk_base + REG_CLK_SYSCLK1, 5);
> +
> + /* HWS */
> + hws[HWS_GATE] = ma35d1_clk_gate("hws_gate", "hclk0",
> + clk_base + REG_CLK_SYSCLK1, 6);
> +
> + /* EBI */
> + hws[EBI_GATE] = ma35d1_clk_gate("ebi_gate", "hclk0",
> + clk_base + REG_CLK_SYSCLK1, 7);
> +
> + /* SRAM0~1 */
> + hws[SRAM0_GATE] = ma35d1_clk_gate("sram0_gate", "hclk0",
> + clk_base + REG_CLK_SYSCLK1, 8);
> + hws[SRAM1_GATE] = ma35d1_clk_gate("sram1_gate", "hclk0",
> + clk_base + REG_CLK_SYSCLK1, 9);
> +
> + /* ROM */
> + hws[ROM_GATE] = ma35d1_clk_gate("rom_gate", "hclk0",
> + clk_base + REG_CLK_SYSCLK1, 10);
> +
> + /* TRA */
> + hws[TRA_GATE] = ma35d1_clk_gate("tra_gate", "hclk0",
> + clk_base + REG_CLK_SYSCLK1, 11);
> +
> + /* DBG */
> + hws[DBG_MUX] = ma35d1_clk_mux("dbg_mux", clk_base + REG_CLK_CLKSEL0,
> + 27, 1, dbg_sel_clks,
> + ARRAY_SIZE(dbg_sel_clks));
> + hws[DBG_GATE] = ma35d1_clk_gate("dbg_gate", "hclk0",
> + clk_base + REG_CLK_SYSCLK1, 12);
> +
> + /* CLKO */
> + hws[CKO_MUX] = ma35d1_clk_mux("cko_mux", clk_base + REG_CLK_CLKSEL4,
> + 24, 4, cko_sel_clks,
> + ARRAY_SIZE(cko_sel_clks));
> + hws[CKO_DIV] = ma35d1_clk_divider_pow2("cko_div", "cko_mux",
> + clk_base + REG_CLK_CLKOCTL,
> + 0, 4);
> + hws[CKO_GATE] = ma35d1_clk_gate("cko_gate", "cko_div",
> + clk_base + REG_CLK_SYSCLK1, 13);
> +
> + /* GTMR */
> + hws[GTMR_GATE] = ma35d1_clk_gate("gtmr_gate", "hirc",
> + clk_base + REG_CLK_SYSCLK1, 14);
> +
> + /* GPIO */
> + hws[GPA_GATE] = ma35d1_clk_gate("gpa_gate", "hclk0",
> + clk_base + REG_CLK_SYSCLK1, 16);
> + hws[GPB_GATE] = ma35d1_clk_gate("gpb_gate", "hclk0",
> + clk_base + REG_CLK_SYSCLK1, 17);
> + hws[GPC_GATE] = ma35d1_clk_gate("gpc_gate", "hclk0",
> + clk_base + REG_CLK_SYSCLK1, 18);
> + hws[GPD_GATE] = ma35d1_clk_gate("gpd_gate", "hclk0",
> + clk_base + REG_CLK_SYSCLK1, 19);
> + hws[GPE_GATE] = ma35d1_clk_gate("gpe_gate", "hclk0",
> + clk_base + REG_CLK_SYSCLK1, 20);
> + hws[GPF_GATE] = ma35d1_clk_gate("gpf_gate", "hclk0",
> + clk_base + REG_CLK_SYSCLK1, 21);
> + hws[GPG_GATE] = ma35d1_clk_gate("gpg_gate", "hclk0",
> + clk_base + REG_CLK_SYSCLK1, 22);
> + hws[GPH_GATE] = ma35d1_clk_gate("gph_gate", "hclk0",
> + clk_base + REG_CLK_SYSCLK1, 23);
> + hws[GPI_GATE] = ma35d1_clk_gate("gpi_gate", "hclk0",
> + clk_base + REG_CLK_SYSCLK1, 24);
> + hws[GPJ_GATE] = ma35d1_clk_gate("gpj_gate", "hclk0",
> + clk_base + REG_CLK_SYSCLK1, 25);
> + hws[GPK_GATE] = ma35d1_clk_gate("gpk_gate", "hclk0",
> + clk_base + REG_CLK_SYSCLK1, 26);
> + hws[GPL_GATE] = ma35d1_clk_gate("gpl_gate", "hclk0",
> + clk_base + REG_CLK_SYSCLK1, 27);
> + hws[GPM_GATE] = ma35d1_clk_gate("gpm_gate", "hclk0",
> + clk_base + REG_CLK_SYSCLK1, 28);
> + hws[GPN_GATE] = ma35d1_clk_gate("gpn_gate", "hclk0",
> + clk_base + REG_CLK_SYSCLK1, 29);
> +
> + /* TIMER0~11 */
> + hws[TMR0_MUX] = ma35d1_clk_mux("tmr0_mux", clk_base + REG_CLK_CLKSEL1,
> + 0, 3, timer0_sel_clks,
> + ARRAY_SIZE(timer0_sel_clks));
> + hws[TMR0_GATE] = ma35d1_clk_gate("tmr0_gate", "tmr0_mux",
> + clk_base + REG_CLK_APBCLK0, 0);
> + hws[TMR1_MUX] = ma35d1_clk_mux("tmr1_mux", clk_base + REG_CLK_CLKSEL1,
> + 4, 3, timer1_sel_clks,
> + ARRAY_SIZE(timer1_sel_clks));
> + hws[TMR1_GATE] = ma35d1_clk_gate("tmr1_gate", "tmr1_mux",
> + clk_base + REG_CLK_APBCLK0, 1);
> + hws[TMR2_MUX] = ma35d1_clk_mux("tmr2_mux", clk_base + REG_CLK_CLKSEL1,
> + 8, 3, timer2_sel_clks,
> + ARRAY_SIZE(timer2_sel_clks));
> + hws[TMR2_GATE] = ma35d1_clk_gate("tmr2_gate", "tmr2_mux",
> + clk_base + REG_CLK_APBCLK0, 2);
> + hws[TMR3_MUX] = ma35d1_clk_mux("tmr3_mux", clk_base + REG_CLK_CLKSEL1,
> + 12, 3, timer3_sel_clks,
> + ARRAY_SIZE(timer3_sel_clks));
> + hws[TMR3_GATE] = ma35d1_clk_gate("tmr3_gate", "tmr3_mux",
> + clk_base + REG_CLK_APBCLK0, 3);
> + hws[TMR4_MUX] = ma35d1_clk_mux("tmr4_mux", clk_base + REG_CLK_CLKSEL1,
> + 16, 3, timer4_sel_clks,
> + ARRAY_SIZE(timer4_sel_clks));
> + hws[TMR4_GATE] = ma35d1_clk_gate("tmr4_gate", "tmr4_mux",
> + clk_base + REG_CLK_APBCLK0, 4);
> + hws[TMR5_MUX] = ma35d1_clk_mux("tmr5_mux", clk_base + REG_CLK_CLKSEL1,
> + 20, 3, timer5_sel_clks,
> + ARRAY_SIZE(timer5_sel_clks));
> + hws[TMR5_GATE] = ma35d1_clk_gate("tmr5_gate", "tmr5_mux",
> + clk_base + REG_CLK_APBCLK0, 5);
> + hws[TMR6_MUX] = ma35d1_clk_mux("tmr6_mux", clk_base + REG_CLK_CLKSEL1,
> + 24, 3, timer6_sel_clks,
> + ARRAY_SIZE(timer6_sel_clks));
> + hws[TMR6_GATE] = ma35d1_clk_gate("tmr6_gate", "tmr6_mux",
> + clk_base + REG_CLK_APBCLK0, 6);
> + hws[TMR7_MUX] = ma35d1_clk_mux("tmr7_mux", clk_base + REG_CLK_CLKSEL1,
> + 28, 3, timer7_sel_clks,
> + ARRAY_SIZE(timer7_sel_clks));
> + hws[TMR7_GATE] = ma35d1_clk_gate("tmr7_gate", "tmr7_mux",
> + clk_base + REG_CLK_APBCLK0, 7);
> + hws[TMR8_MUX] = ma35d1_clk_mux("tmr8_mux", clk_base + REG_CLK_CLKSEL2,
> + 0, 3, timer8_sel_clks,
> + ARRAY_SIZE(timer8_sel_clks));
> + hws[TMR8_GATE] = ma35d1_clk_gate("tmr8_gate", "tmr8_mux",
> + clk_base + REG_CLK_APBCLK0, 8);
> + hws[TMR9_MUX] = ma35d1_clk_mux("tmr9_mux", clk_base + REG_CLK_CLKSEL2,
> + 4, 3, timer9_sel_clks,
> + ARRAY_SIZE(timer9_sel_clks));
> + hws[TMR9_GATE] = ma35d1_clk_gate("tmr9_gate", "tmr9_mux",
> + clk_base + REG_CLK_APBCLK0, 9);
> + hws[TMR10_MUX] = ma35d1_clk_mux("tmr10_mux",
> + clk_base + REG_CLK_CLKSEL2,
> + 8, 3, timer10_sel_clks,
> + ARRAY_SIZE(timer10_sel_clks));
> + hws[TMR10_GATE] = ma35d1_clk_gate("tmr10_gate", "tmr10_mux",
> + clk_base + REG_CLK_APBCLK0, 10);
> + hws[TMR11_MUX] = ma35d1_clk_mux("tmr11_mux",
> + clk_base + REG_CLK_CLKSEL2,
> + 12, 3, timer11_sel_clks,
> + ARRAY_SIZE(timer11_sel_clks));
> + hws[TMR11_GATE] = ma35d1_clk_gate("tmr11_gate", "tmr11_mux",
> + clk_base + REG_CLK_APBCLK0, 11);
> +
> + /* UART0~16 */
> + hws[UART0_MUX] = ma35d1_clk_mux("uart0_mux",
> + clk_base + REG_CLK_CLKSEL2,
> + 16, 2, uart_sel_clks,
> + ARRAY_SIZE(uart_sel_clks));
> + hws[UART0_DIV] = ma35d1_clk_divider("uart0_div", "uart0_mux",
> + clk_base + REG_CLK_CLKDIV1,
> + 16, 4);
> + hws[UART0_GATE] = ma35d1_clk_gate("uart0_gate", "uart0_div",
> + clk_base + REG_CLK_APBCLK0, 12);
> + hws[UART1_MUX] = ma35d1_clk_mux("uart1_mux",
> + clk_base + REG_CLK_CLKSEL2,
> + 18, 2, uart_sel_clks,
> + ARRAY_SIZE(uart_sel_clks));
> + hws[UART1_DIV] = ma35d1_clk_divider("uart1_div", "uart1_mux",
> + clk_base + REG_CLK_CLKDIV1,
> + 20, 4);
> + hws[UART1_GATE] = ma35d1_clk_gate("uart1_gate", "uart1_div",
> + clk_base + REG_CLK_APBCLK0, 13);
> + hws[UART2_MUX] = ma35d1_clk_mux("uart2_mux",
> + clk_base + REG_CLK_CLKSEL2,
> + 20, 2, uart_sel_clks,
> + ARRAY_SIZE(uart_sel_clks));
> + hws[UART2_DIV] = ma35d1_clk_divider("uart2_div", "uart2_mux",
> + clk_base + REG_CLK_CLKDIV1,
> + 24, 4);
> + hws[UART2_GATE] = ma35d1_clk_gate("uart2_gate", "uart2_div",
> + clk_base + REG_CLK_APBCLK0, 14);
> + hws[UART3_MUX] = ma35d1_clk_mux("uart3_mux",
> + clk_base + REG_CLK_CLKSEL2,
> + 22, 2, uart_sel_clks,
> + ARRAY_SIZE(uart_sel_clks));
> + hws[UART3_DIV] = ma35d1_clk_divider("uart3_div", "uart3_mux",
> + clk_base + REG_CLK_CLKDIV1,
> + 28, 4);
> + hws[UART3_GATE] = ma35d1_clk_gate("uart3_gate", "uart3_div",
> + clk_base + REG_CLK_APBCLK0, 15);
> + hws[UART4_MUX] = ma35d1_clk_mux("uart4_mux",
> + clk_base + REG_CLK_CLKSEL2,
> + 24, 2, uart_sel_clks,
> + ARRAY_SIZE(uart_sel_clks));
> + hws[UART4_DIV] = ma35d1_clk_divider("uart4_div", "uart4_mux",
> + clk_base + REG_CLK_CLKDIV2,
> + 0, 4);
> + hws[UART4_GATE] = ma35d1_clk_gate("uart4_gate", "uart4_div",
> + clk_base + REG_CLK_APBCLK0, 16);
> + hws[UART5_MUX] = ma35d1_clk_mux("uart5_mux",
> + clk_base + REG_CLK_CLKSEL2,
> + 26, 2, uart_sel_clks,
> + ARRAY_SIZE(uart_sel_clks));
> + hws[UART5_DIV] = ma35d1_clk_divider("uart5_div", "uart5_mux",
> + clk_base + REG_CLK_CLKDIV2,
> + 4, 4);
> + hws[UART5_GATE] = ma35d1_clk_gate("uart5_gate", "uart5_div",
> + clk_base + REG_CLK_APBCLK0, 17);
> + hws[UART6_MUX] = ma35d1_clk_mux("uart6_mux",
> + clk_base + REG_CLK_CLKSEL2,
> + 28, 2, uart_sel_clks,
> + ARRAY_SIZE(uart_sel_clks));
> + hws[UART6_DIV] = ma35d1_clk_divider("uart6_div", "uart6_mux",
> + clk_base + REG_CLK_CLKDIV2,
> + 8, 4);
> + hws[UART6_GATE] = ma35d1_clk_gate("uart6_gate", "uart6_div",
> + clk_base + REG_CLK_APBCLK0, 18);
> + hws[UART7_MUX] = ma35d1_clk_mux("uart7_mux",
> + clk_base + REG_CLK_CLKSEL2,
> + 30, 2, uart_sel_clks,
> + ARRAY_SIZE(uart_sel_clks));
> + hws[UART7_DIV] = ma35d1_clk_divider("uart7_div", "uart7_mux",
> + clk_base + REG_CLK_CLKDIV2,
> + 12, 4);
> + hws[UART7_GATE] = ma35d1_clk_gate("uart7_gate", "uart7_div",
> + clk_base + REG_CLK_APBCLK0, 19);
> + hws[UART8_MUX] = ma35d1_clk_mux("uart8_mux",
> + clk_base + REG_CLK_CLKSEL3,
> + 0, 2, uart_sel_clks,
> + ARRAY_SIZE(uart_sel_clks));
> + hws[UART8_DIV] = ma35d1_clk_divider("uart8_div", "uart8_mux",
> + clk_base + REG_CLK_CLKDIV2,
> + 16, 4);
> + hws[UART8_GATE] = ma35d1_clk_gate("uart8_gate", "uart8_div",
> + clk_base + REG_CLK_APBCLK0, 20);
> + hws[UART9_MUX] = ma35d1_clk_mux("uart9_mux",
> + clk_base + REG_CLK_CLKSEL3,
> + 2, 2, uart_sel_clks,
> + ARRAY_SIZE(uart_sel_clks));
> + hws[UART9_DIV] = ma35d1_clk_divider("uart9_div", "uart9_mux",
> + clk_base + REG_CLK_CLKDIV2,
> + 20, 4);
> + hws[UART9_GATE] = ma35d1_clk_gate("uart9_gate", "uart9_div",
> + clk_base + REG_CLK_APBCLK0, 21);
> + hws[UART10_MUX] = ma35d1_clk_mux("uart10_mux",
> + clk_base + REG_CLK_CLKSEL3,
> + 4, 2, uart_sel_clks,
> + ARRAY_SIZE(uart_sel_clks));
> + hws[UART10_DIV] = ma35d1_clk_divider("uart10_div", "uart10_mux",
> + clk_base + REG_CLK_CLKDIV2,
> + 24, 4);
> + hws[UART10_GATE] = ma35d1_clk_gate("uart10_gate", "uart10_div",
> + clk_base + REG_CLK_APBCLK0, 22);
> + hws[UART11_MUX] = ma35d1_clk_mux("uart11_mux",
> + clk_base + REG_CLK_CLKSEL3,
> + 6, 2, uart_sel_clks,
> + ARRAY_SIZE(uart_sel_clks));
> + hws[UART11_DIV] = ma35d1_clk_divider("uart11_div", "uart11_mux",
> + clk_base + REG_CLK_CLKDIV2,
> + 28, 4);
> + hws[UART11_GATE] = ma35d1_clk_gate("uart11_gate", "uart11_div",
> + clk_base + REG_CLK_APBCLK0, 23);
> + hws[UART12_MUX] = ma35d1_clk_mux("uart12_mux",
> + clk_base + REG_CLK_CLKSEL3,
> + 8, 2, uart_sel_clks,
> + ARRAY_SIZE(uart_sel_clks));
> + hws[UART12_DIV] = ma35d1_clk_divider("uart12_div", "uart12_mux",
> + clk_base + REG_CLK_CLKDIV3,
> + 0, 4);
> + hws[UART12_GATE] = ma35d1_clk_gate("uart12_gate", "uart12_div",
> + clk_base + REG_CLK_APBCLK0, 24);
> + hws[UART13_MUX] = ma35d1_clk_mux("uart13_mux",
> + clk_base + REG_CLK_CLKSEL3,
> + 10, 2, uart_sel_clks,
> + ARRAY_SIZE(uart_sel_clks));
> + hws[UART13_DIV] = ma35d1_clk_divider("uart13_div", "uart13_mux",
> + clk_base + REG_CLK_CLKDIV3,
> + 4, 4);
> + hws[UART13_GATE] = ma35d1_clk_gate("uart13_gate", "uart13_div",
> + clk_base + REG_CLK_APBCLK0, 25);
> + hws[UART14_MUX] = ma35d1_clk_mux("uart14_mux",
> + clk_base + REG_CLK_CLKSEL3,
> + 12, 2, uart_sel_clks,
> + ARRAY_SIZE(uart_sel_clks));
> + hws[UART14_DIV] = ma35d1_clk_divider("uart14_div", "uart14_mux",
> + clk_base + REG_CLK_CLKDIV3,
> + 8, 4);
> + hws[UART14_GATE] = ma35d1_clk_gate("uart14_gate", "uart14_div",
> + clk_base + REG_CLK_APBCLK0, 26);
> + hws[UART15_MUX] = ma35d1_clk_mux("uart15_mux",
> + clk_base + REG_CLK_CLKSEL3,
> + 14, 2, uart_sel_clks,
> + ARRAY_SIZE(uart_sel_clks));
> + hws[UART15_DIV] = ma35d1_clk_divider("uart15_div", "uart15_mux",
> + clk_base + REG_CLK_CLKDIV3,
> + 12, 4);
> + hws[UART15_GATE] = ma35d1_clk_gate("uart15_gate", "uart15_div",
> + clk_base + REG_CLK_APBCLK0, 27);
> + hws[UART16_MUX] = ma35d1_clk_mux("uart16_mux",
> + clk_base + REG_CLK_CLKSEL3,
> + 16, 2, uart_sel_clks,
> + ARRAY_SIZE(uart_sel_clks));
> + hws[UART16_DIV] = ma35d1_clk_divider("uart16_div", "uart16_mux",
> + clk_base + REG_CLK_CLKDIV3,
> + 16, 4);
> + hws[UART16_GATE] = ma35d1_clk_gate("uart16_gate", "uart16_div",
> + clk_base + REG_CLK_APBCLK0, 28);
> +
> + /* RTC */
> + hws[RTC_GATE] = ma35d1_clk_gate("rtc_gate", "lxt",
> + clk_base + REG_CLK_APBCLK0, 29);
> +
> + /* DDRP */
> + hws[DDR_GATE] = ma35d1_clk_gate("ddr_gate", "ddrpll",
> + clk_base + REG_CLK_APBCLK0, 30);
> +
> + /* KPI */
> + hws[KPI_MUX] = ma35d1_clk_mux("kpi_mux", clk_base + REG_CLK_CLKSEL4,
> + 30, 1, kpi_sel_clks,
> + ARRAY_SIZE(kpi_sel_clks));
> + hws[KPI_DIV] = ma35d1_clk_divider("kpi_div", "kpi_mux",
> + clk_base + REG_CLK_CLKDIV4,
> + 24, 8);
> + hws[KPI_GATE] = ma35d1_clk_gate("kpi_gate", "kpi_div",
> + clk_base + REG_CLK_APBCLK0, 31);
> +
> + /* I2C0~5 */
> + hws[I2C0_GATE] = ma35d1_clk_gate("i2c0_gate", "pclk0",
> + clk_base + REG_CLK_APBCLK1, 0);
> + hws[I2C1_GATE] = ma35d1_clk_gate("i2c1_gate", "pclk1",
> + clk_base + REG_CLK_APBCLK1, 1);
> + hws[I2C2_GATE] = ma35d1_clk_gate("i2c2_gate", "pclk2",
> + clk_base + REG_CLK_APBCLK1, 2);
> + hws[I2C3_GATE] = ma35d1_clk_gate("i2c3_gate", "pclk0",
> + clk_base + REG_CLK_APBCLK1, 3);
> + hws[I2C4_GATE] = ma35d1_clk_gate("i2c4_gate", "pclk1",
> + clk_base + REG_CLK_APBCLK1, 4);
> + hws[I2C5_GATE] = ma35d1_clk_gate("i2c5_gate", "pclk2",
> + clk_base + REG_CLK_APBCLK1, 5);
> +
> + /* QSPI0~1 */
> + hws[QSPI0_MUX] = ma35d1_clk_mux("qspi0_mux",
> + clk_base + REG_CLK_CLKSEL4,
> + 8, 2, qspi0_sel_clks,
> + ARRAY_SIZE(qspi0_sel_clks));
> + hws[QSPI0_GATE] = ma35d1_clk_gate("qspi0_gate", "qspi0_mux",
> + clk_base + REG_CLK_APBCLK1, 6);
> + hws[QSPI1_MUX] = ma35d1_clk_mux("qspi1_mux",
> + clk_base + REG_CLK_CLKSEL4,
> + 10, 2, qspi1_sel_clks,
> + ARRAY_SIZE(qspi1_sel_clks));
> + hws[QSPI1_GATE] = ma35d1_clk_gate("qspi1_gate", "qspi1_mux",
> + clk_base + REG_CLK_APBCLK1, 7);
> +
> + /* SMC0~1 */
> + hws[SMC0_MUX] = ma35d1_clk_mux("smc0_mux",
> + clk_base + REG_CLK_CLKSEL4,
> + 28, 1, smc_sel_clks,
> + ARRAY_SIZE(smc_sel_clks));
> + hws[SMC0_DIV] = ma35d1_clk_divider("smc0_div", "smc0_mux",
> + clk_base + REG_CLK_CLKDIV1,
> + 0, 4);
> + hws[SMC0_GATE] = ma35d1_clk_gate("smc0_gate", "smc0_div",
> + clk_base + REG_CLK_APBCLK1, 12);
> +
> + hws[SMC1_MUX] = ma35d1_clk_mux("smc1_mux",
> + clk_base + REG_CLK_CLKSEL4,
> + 29, 1, smc_sel_clks,
> + ARRAY_SIZE(smc_sel_clks));
> + hws[SMC1_DIV] = ma35d1_clk_divider("smc1_div", "smc1_mux",
> + clk_base + REG_CLK_CLKDIV1,
> + 4, 4);
> + hws[SMC1_GATE] = ma35d1_clk_gate("smc1_gate", "smc1_div",
> + clk_base + REG_CLK_APBCLK1, 13);
> +
> + /* WDT0~2 */
> + hws[WDT0_MUX] = ma35d1_clk_mux("wdt0_mux",
> + clk_base + REG_CLK_CLKSEL3,
> + 20, 2, wdt0_sel_clks,
> + ARRAY_SIZE(wdt0_sel_clks));
> + hws[WDT0_GATE] = ma35d1_clk_gate("wdt0_gate", "wdt0_mux",
> + clk_base + REG_CLK_APBCLK1, 16);
> + hws[WDT1_MUX] = ma35d1_clk_mux("wdt1_mux",
> + clk_base + REG_CLK_CLKSEL3,
> + 24, 2, wdt1_sel_clks,
> + ARRAY_SIZE(wdt1_sel_clks));
> + hws[WDT1_GATE] = ma35d1_clk_gate("wdt1_gate", "wdt1_mux",
> + clk_base + REG_CLK_APBCLK1, 17);
> + hws[WDT2_MUX] = ma35d1_clk_mux("wdt2_mux",
> + clk_base + REG_CLK_CLKSEL3,
> + 28, 2, wdt2_sel_clks,
> + ARRAY_SIZE(wdt2_sel_clks));
> + hws[WDT2_GATE] = ma35d1_clk_gate("wdt2_gate", "wdt2_mux",
> + clk_base + REG_CLK_APBCLK1, 18);
> +
> + /* WWDT0~2 */
> + hws[WWDT0_MUX] = ma35d1_clk_mux("wwdt0_mux",
> + clk_base + REG_CLK_CLKSEL3,
> + 22, 2, wwdt0_sel_clks,
> + ARRAY_SIZE(wwdt0_sel_clks));
> + hws[WWDT1_MUX] = ma35d1_clk_mux("wwdt1_mux",
> + clk_base + REG_CLK_CLKSEL3,
> + 26, 2, wwdt1_sel_clks,
> + ARRAY_SIZE(wwdt1_sel_clks));
> + hws[WWDT2_MUX] = ma35d1_clk_mux("wwdt2_mux",
> + clk_base + REG_CLK_CLKSEL3,
> + 30, 2, wwdt2_sel_clks,
> + ARRAY_SIZE(wwdt2_sel_clks));
> +
> + /* EPWM0~2 */
> + hws[EPWM0_GATE] = ma35d1_clk_gate("epwm0_gate", "pclk1",
> + clk_base + REG_CLK_APBCLK1, 24);
> + hws[EPWM1_GATE] = ma35d1_clk_gate("epwm1_gate", "pclk2",
> + clk_base + REG_CLK_APBCLK1, 25);
> + hws[EPWM2_GATE] = ma35d1_clk_gate("epwm2_gate", "pclk1",
> + clk_base + REG_CLK_APBCLK1, 26);
> +
> + /* I2S0~1 */
> + hws[I2S0_MUX] = ma35d1_clk_mux("i2s0_mux",
> + clk_base + REG_CLK_CLKSEL4,
> + 12, 2, i2s0_sel_clks,
> + ARRAY_SIZE(i2s0_sel_clks));
> + hws[I2S0_GATE] = ma35d1_clk_gate("i2s0_gate", "i2s0_mux",
> + clk_base + REG_CLK_APBCLK2, 0);
> + hws[I2S1_MUX] = ma35d1_clk_mux("i2s1_mux",
> + clk_base + REG_CLK_CLKSEL4,
> + 14, 2, i2s1_sel_clks,
> + ARRAY_SIZE(i2s1_sel_clks));
> + hws[I2S1_GATE] = ma35d1_clk_gate("i2s1_gate", "i2s1_mux",
> + clk_base + REG_CLK_APBCLK2, 1);
> +
> + /* SSMCC */
> + hws[SSMCC_GATE] = ma35d1_clk_gate("ssmcc_gate", "pclk3",
> + clk_base + REG_CLK_APBCLK2, 2);
> +
> + /* SSPCC */
> + hws[SSPCC_GATE] = ma35d1_clk_gate("sspcc_gate", "pclk3",
> + clk_base + REG_CLK_APBCLK2, 3);
> +
> + /* SPI0~3 */
> + hws[SPI0_MUX] = ma35d1_clk_mux("spi0_mux",
> + clk_base + REG_CLK_CLKSEL4,
> + 0, 2, spi0_sel_clks,
> + ARRAY_SIZE(spi0_sel_clks));
> + hws[SPI0_GATE] = ma35d1_clk_gate("spi0_gate", "spi0_mux",
> + clk_base + REG_CLK_APBCLK2, 4);
> + hws[SPI1_MUX] = ma35d1_clk_mux("spi1_mux",
> + clk_base + REG_CLK_CLKSEL4,
> + 2, 2, spi1_sel_clks,
> + ARRAY_SIZE(spi1_sel_clks));
> + hws[SPI1_GATE] = ma35d1_clk_gate("spi1_gate", "spi1_mux",
> + clk_base + REG_CLK_APBCLK2, 5);
> + hws[SPI2_MUX] = ma35d1_clk_mux("spi2_mux",
> + clk_base + REG_CLK_CLKSEL4,
> + 4, 2, spi2_sel_clks,
> + ARRAY_SIZE(spi2_sel_clks));
> + hws[SPI2_GATE] = ma35d1_clk_gate("spi2_gate", "spi2_mux",
> + clk_base + REG_CLK_APBCLK2, 6);
> + hws[SPI3_MUX] = ma35d1_clk_mux("spi3_mux",
> + clk_base + REG_CLK_CLKSEL4,
> + 6, 2, spi3_sel_clks,
> + ARRAY_SIZE(spi3_sel_clks));
> + hws[SPI3_GATE] = ma35d1_clk_gate("spi3_gate", "spi3_mux",
> + clk_base + REG_CLK_APBCLK2, 7);
> +
> + /* ECAP0~2 */
> + hws[ECAP0_GATE] = ma35d1_clk_gate("ecap0_gate", "pclk1",
> + clk_base + REG_CLK_APBCLK2, 8);
> + hws[ECAP1_GATE] = ma35d1_clk_gate("ecap1_gate", "pclk2",
> + clk_base + REG_CLK_APBCLK2, 9);
> + hws[ECAP2_GATE] = ma35d1_clk_gate("ecap2_gate", "pclk1",
> + clk_base + REG_CLK_APBCLK2, 10);
> +
> + /* QEI0~2 */
> + hws[QEI0_GATE] = ma35d1_clk_gate("qei0_gate", "pclk1",
> + clk_base + REG_CLK_APBCLK2, 12);
> + hws[QEI1_GATE] = ma35d1_clk_gate("qei1_gate", "pclk2",
> + clk_base + REG_CLK_APBCLK2, 13);
> + hws[QEI2_GATE] = ma35d1_clk_gate("qei2_gate", "pclk1",
> + clk_base + REG_CLK_APBCLK2, 14);
> +
> + /* ADC */
> + hws[ADC_DIV] = ma35d1_reg_adc_clkdiv(dev, "adc_div", "pclk0", 0,
> + clk_base + REG_CLK_CLKDIV4,
> + 4, 17, 0x1ffff);
> + hws[ADC_GATE] = ma35d1_clk_gate("adc_gate", "adc_div",
> + clk_base + REG_CLK_APBCLK2, 24);
> +
> + /* EADC */
> + hws[EADC_DIV] = ma35d1_clk_divider_table("eadc_div", "pclk2",
> + clk_base + REG_CLK_CLKDIV4,
> + 0, 4, eadc_div_table);
> + hws[EADC_GATE] = ma35d1_clk_gate("eadc_gate", "eadc_div",
> + clk_base + REG_CLK_APBCLK2, 25);
> +
> + ret = of_clk_add_hw_provider(clk_node, of_clk_hw_onecell_get,
> + ma35d1_hw_data);
> + if (ret < 0) {
> + dev_err(dev, "failed to register hws for MA35D1\n");
> + iounmap(clk_base);
> + }
> + return ret;
> +}
> +
> +static const struct of_device_id ma35d1_clk_of_match[] = {
> + { .compatible = "nuvoton,ma35d1-clk" },
> + { },
> +};
> +MODULE_DEVICE_TABLE(of, ma35d1_clk_of_match);
> +
> +static struct platform_driver ma35d1_clk_driver = {
> + .probe = ma35d1_clocks_probe,
> + .driver = {
> + .name = "ma35d1-clk",
> + .of_match_table = ma35d1_clk_of_match,
> + },
> +};
> +
> +static int __init ma35d1_clocks_init(void)
> +{
> + return platform_driver_register(&ma35d1_clk_driver);
> +}
> +
> +postcore_initcall(ma35d1_clocks_init);
> +
> +MODULE_AUTHOR("Chi-Fang Li<cfli0@xxxxxxxxxxx>");

Space missing.

> +MODULE_DESCRIPTION("NUVOTON MA35D1 Clock Driver");
> +MODULE_LICENSE("GPL v2");

"GPL" is enough.

> diff --git a/drivers/clk/nuvoton/clk-ma35d1.h b/drivers/clk/nuvoton/clk-ma35d1.h
> new file mode 100644
> index 000000000000..faae5a17e425
> --- /dev/null
> +++ b/drivers/clk/nuvoton/clk-ma35d1.h
> @@ -0,0 +1,198 @@
> +/* SPDX-License-Identifier: GPL-2.0-only */
> +/*
> + * Copyright (C) 2023 Nuvoton Technology Corp.
> + * Author: Chi-Fang Li <cfli0@xxxxxxxxxxx>
> + */
> +
> +#ifndef __DRV_CLK_NUVOTON_MA35D1_H
> +#define __DRV_CLK_NUVOTON_MA35D1_H
> +
> +#include <linux/clk.h>
> +#include <linux/clkdev.h>
> +#include <linux/clk-provider.h>
> +#include <linux/spinlock.h>
> +#include <linux/regmap.h>
> +#include <linux/mfd/syscon.h>
> +#include <linux/mfd/ma35d1-sys.h>
> +
> +enum ma35d1_pll_type {
> + MA35D1_CAPLL,
> + MA35D1_DDRPLL,
> + MA35D1_APLL,
> + MA35D1_EPLL,
> + MA35D1_VPLL,
> +};
> +
> +enum ma35d1_pll_mode {
> + VSIPLL_INTEGER_MODE,
> + VSIPLL_FRACTIONAL_MODE,
> + VSIPLL_SS_MODE,
> +};
> +
> +/* VSI-PLL CTL0~2 */
> +#define VSIPLL_CTL0 0x0
> +#define VSIPLL_CTL1 0x4
> +#define VSIPLL_CTL2 0x8
> +
> +/* VSI-PLL Specification limits */
> +#define VSIPLL_FREF_MAX_FREQ 200000000UL
> +#define VSIPLL_FREF_MIN_FREQ 1000000UL
> +#define VSIPLL_FREFDIVM_MAX_FREQ 40000000UL
> +#define VSIPLL_FREFDIVM_MIN_FREQ0 1000000UL
> +#define VSIPLL_FREFDIVM_MIN_FREQ1 10000000UL
> +#define VSIPLL_FCLK_MAX_FREQ 2400000000UL
> +#define VSIPLL_FCLK_MIN_FREQ 600000000UL
> +#define VSIPLL_FCLKO_MAX_FREQ 2400000000UL
> +#define VSIPLL_FCLKO_MIN_FREQ 85700000UL
> +#define VSIPLL_SPREAD_RANGE 194
> +#define VSIPLL_MODULATION_FREQ 50000
> +
> +/* Clock Control Registers Offset */
> +#define REG_CLK_PWRCTL (0x00)

Unnecessary parenthesis.

> +#define REG_CLK_SYSCLK0 (0x04)
> +#define REG_CLK_SYSCLK1 (0x08)
> +#define REG_CLK_APBCLK0 (0x0C)
> +#define REG_CLK_APBCLK1 (0x10)
> +#define REG_CLK_APBCLK2 (0x14)
> +#define REG_CLK_CLKSEL0 (0x18)
> +#define REG_CLK_CLKSEL1 (0x1C)
> +#define REG_CLK_CLKSEL2 (0x20)
> +#define REG_CLK_CLKSEL3 (0x24)
> +#define REG_CLK_CLKSEL4 (0x28)
> +#define REG_CLK_CLKDIV0 (0x2C)
> +#define REG_CLK_CLKDIV1 (0x30)
> +#define REG_CLK_CLKDIV2 (0x34)
> +#define REG_CLK_CLKDIV3 (0x38)
> +#define REG_CLK_CLKDIV4 (0x3C)
> +#define REG_CLK_CLKOCTL (0x40)
> +#define REG_CLK_STATUS (0x50)
> +#define REG_CLK_PLL0CTL0 (0x60)
> +#define REG_CLK_PLL2CTL0 (0x80)
> +#define REG_CLK_PLL2CTL1 (0x84)
> +#define REG_CLK_PLL2CTL2 (0x88)
> +#define REG_CLK_PLL3CTL0 (0x90)
> +#define REG_CLK_PLL3CTL1 (0x94)
> +#define REG_CLK_PLL3CTL2 (0x98)
> +#define REG_CLK_PLL4CTL0 (0xA0)
> +#define REG_CLK_PLL4CTL1 (0xA4)
> +#define REG_CLK_PLL4CTL2 (0xA8)
> +#define REG_CLK_PLL5CTL0 (0xB0)
> +#define REG_CLK_PLL5CTL1 (0xB4)
> +#define REG_CLK_PLL5CTL2 (0xB8)
> +#define REG_CLK_CLKDCTL (0xC0)
> +#define REG_CLK_CLKDSTS (0xC4)
> +#define REG_CLK_CDUPB (0xC8)
> +#define REG_CLK_CDLOWB (0xCC)
> +#define REG_CLK_CKFLTRCTL (0xD0)
> +#define REG_CLK_TESTCLK (0xF0)
> +#define REG_CLK_PLLCTL (0x40)
> +
> +/* Constant Definitions for Clock Controller */
> +#define SMICPLLCTL0_FBDIV_POS (0)
> +#define SMICPLLCTL0_FBDIV_MSK (0xfful << SMICPLLCTL0_FBDIV_POS)
> +#define SMICPLLCTL0_INDIV_POS (8)
> +#define SMICPLLCTL0_INDIV_MSK (0xful << SMICPLLCTL0_INDIV_POS)
> +#define SMICPLLCTL0_OUTDIV_POS (12)
> +#define SMICPLLCTL0_OUTDIV_MSK (0x3ul << SMICPLLCTL0_OUTDIV_POS)

GENMASK() + remove _POS define completely.

> +#define SMICPLLCTL0_PD_POS (16)
> +#define SMICPLLCTL0_PD_MSK (0x1ul << SMICPLLCTL0_PD_POS)

BIT() + remove _POS.

Is this really a mask or a bit? I'd remove _MSK from the name (which is
usually not that useful anyway even if it would be a multiple bit mask
for real).

> +#define SMICPLLCTL0_BP_POS (17)
> +#define SMICPLLCTL0_BP_MSK (0x1ul << SMICPLLCTL0_BP_POS)

BIT()?

> +#define VSIPLLCTL0_FBDIV_POS (0)
> +#define VSIPLLCTL0_FBDIV_MSK (0x7fful << VSIPLLCTL0_FBDIV_POS)
> +#define VSIPLLCTL0_INDIV_POS (12)
> +#define VSIPLLCTL0_INDIV_MSK (0x3ful << VSIPLLCTL0_INDIV_POS)
> +#define VSIPLLCTL0_MODE_POS (18)
> +#define VSIPLLCTL0_MODE_MSK (0x3ul << VSIPLLCTL0_MODE_POS)
> +#define VSIPLLCTL0_SSRATE_POS (20)
> +#define VSIPLLCTL0_SSRATE_MSK (0x7fful << VSIPLLCTL0_SSRATE_POS)
> +#define VSIPLLCTL1_PD_POS (0)
> +#define VSIPLLCTL1_PD_MSK (0x1ul << VSIPLLCTL1_PD_POS)
> +#define VSIPLLCTL1_BP_POS (1)
> +#define VSIPLLCTL1_BP_MSK (0x1ul << VSIPLLCTL1_BP_POS)
> +#define VSIPLLCTL1_OUTDIV_POS (4)
> +#define VSIPLLCTL1_OUTDIV_MSK (0x7ul << VSIPLLCTL1_OUTDIV_POS)
> +#define VSIPLLCTL1_FRAC_POS (8)
> +#define VSIPLLCTL1_FRAC_MSK (0xfffffful << VSIPLLCTL1_FRAC_POS)
> +#define VSIPLLCTL2_SLOPE_POS (0)
> +#define VSIPLLCTL2_SLOPE_MSK (0xfffffful << VSIPLLCTL2_SLOPE_POS)

...and more of them.



--
i.