Re: [PATCH v7 6/8] KVM: MMU: Add support for PKS emulation

From: Sean Christopherson
Date: Tue May 24 2022 - 19:28:34 EST


On Sun, Apr 24, 2022, Lei Wang wrote:
> @@ -454,10 +455,11 @@ struct kvm_mmu {
> u8 permissions[16];
>
> /*
> - * The pkru_mask indicates if protection key checks are needed. It
> - * consists of 16 domains indexed by page fault error code bits [4:1],
> - * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
> - * Each domain has 2 bits which are ANDed with AD and WD from PKRU.
> + * The pkr_mask indicates if protection key checks are needed.
> + * It consists of 16 domains indexed by page fault error code
> + * bits[4:1] with PFEC.RSVD replaced by ACC_USER_MASK from the
> + * page tables. Each domain has 2 bits which are ANDed with AD
> + * and WD from PKRU/PKRS.

Same comments, align and wrap closer to 80 please.

> */
> u32 pkr_mask;
>
> diff --git a/arch/x86/kvm/mmu.h b/arch/x86/kvm/mmu.h
> index cea03053a153..6963c641e6ce 100644
> --- a/arch/x86/kvm/mmu.h
> +++ b/arch/x86/kvm/mmu.h
> @@ -45,7 +45,8 @@
> #define PT32E_ROOT_LEVEL 3
>
> #define KVM_MMU_CR4_ROLE_BITS (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_LA57 | \
> - X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE)
> + X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE | \
> + X86_CR4_PKS)
>
> #define KVM_MMU_CR0_ROLE_BITS (X86_CR0_PG | X86_CR0_WP)
> #define KVM_MMU_EFER_ROLE_BITS (EFER_LME | EFER_NX)
> diff --git a/arch/x86/kvm/mmu/mmu.c b/arch/x86/kvm/mmu/mmu.c
> index 6d3276986102..a6cbc22d3312 100644
> --- a/arch/x86/kvm/mmu/mmu.c
> +++ b/arch/x86/kvm/mmu/mmu.c
> @@ -209,6 +209,7 @@ BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
> BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
> BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
> BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
> +BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pks, X86_CR4_PKS);
> BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
> BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
>
> @@ -231,6 +232,7 @@ BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep);
> BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap);
> BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke);
> BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57);
> +BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pks);
> BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
>
> static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
> @@ -4608,37 +4610,58 @@ static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
> }
>
> /*

...

> + * Protection Key Rights (PKR) is an additional mechanism by which data accesses
> + * with 4-level or 5-level paging (EFER.LMA=1) may be disabled based on the
> + * Protection Key Rights Userspace (PRKU) or Protection Key Rights Supervisor
> + * (PKRS) registers. The Protection Key (PK) used for an access is a 4-bit
> + * value specified in bits 62:59 of the leaf PTE used to translate the address.
> + *
> + * PKRU and PKRS are 32-bit registers, with 16 2-bit entries consisting of an
> + * access-disable (AD) and write-disable (WD) bit. The PK from the leaf PTE is
> + * used to index the approriate PKR (see below), e.g. PK=1 would consume bits

s/approriate/appropriate

> + * 3:2 (bit 3 == write-disable, bit 2 == access-disable).
> + *
> + * The PK register (PKRU vs. PKRS) indexed by the PK depends on the type of
> + * _address_ (not access type!). For a user-mode address, PKRU is used; for a
> + * supervisor-mode address, PKRS is used. An address is supervisor-mode if the
> + * U/S flag (bit 2) is 0 in at least one of the paging-structure entries, i.e.
> + * an address is user-mode if the U/S flag is 1 in _all_ entries. Again, this
> + * is the address type, not the the access type, e.g. a supervisor-mode _access_

Double "the the" can be a single "the".

> + * will consume PKRU if the _address_ is a user-mode address.
> + *
> + * As alluded to above, PKR checks are only performed for data accesses; code
> + * fetches are not subject to PKR checks. Terminal page faults (!PRESENT or
> + * PFEC.RSVD=1) are also not subject to PKR checks.
> + *
> + * PKR write-disable checks for superivsor-mode _accesses_ are performed if and
> + * only if CR0.WP=1 (though access-disable checks still apply).
> + *
> + * In summary, PKR checks are based on (a) EFER.LMA, (b) CR4.PKE or CR4.PKS,
> + * (c) CR0.WP, (d) the PK in the leaf PTE, (e) two bits from the corresponding
> + * PKR{S,U} entry, (f) the access type (derived from the other PFEC bits), and
> + * (g) the address type (retrieved from the paging-structure entries).
> + *
> + * To avoid conditional branches in permission_fault(), the PKR bitmask caches
> + * the above inputs, except for (e) the PKR{S,U} entry. The FETCH, USER, and
> + * WRITE bits of the PFEC and the effective value of the paging-structures' U/S
> + * bit (slotted into the PFEC.RSVD position, bit 3) are used to index into the
> + * PKR bitmask (similar to the 4-bit Protection Key itself). The two bits of
> + * the PKR bitmask "entry" are then extracted and ANDed with the two bits of
> + * the PKR{S,U} register corresponding to the address type and protection key.
> + *
> + * E.g. for all values where PFEC.FETCH=1, the corresponding pkr_bitmask bits
> + * will be 00b, thus masking away the AD and WD bits from the PKR{S,U} register
> + * to suppress PKR checks on code fetches.
> + */
> static void update_pkr_bitmask(struct kvm_mmu *mmu)
> {
> unsigned bit;
> bool wp;
> -

Please keep this newline, i.e. after the declaration of the cr4 booleans. That
helps isolate the clearing of mmu->pkr_mask, which makes the functional affect of
the earlier return more obvious.

Ah, and use reverse fir tree for the variable declarations, i.e.

bool cr4_pke = is_cr4_pke(mmu);
bool cr4_pks = is_cr4_pks(mmu);
unsigned bit;
bool wp;

mmu->pkr_mask = 0;

if (!cr4_pke && !cr4_pks)
return;

> + bool cr4_pke = is_cr4_pke(mmu);
> + bool cr4_pks = is_cr4_pks(mmu);
> mmu->pkr_mask = 0;
>
> - if (!is_cr4_pke(mmu))
> + if (!cr4_pke && !cr4_pks)
> return;
>
> wp = is_cr0_wp(mmu);


...

> @@ -6482,14 +6509,22 @@ u32 kvm_mmu_pkr_bits(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
> unsigned pte_access, unsigned pte_pkey, unsigned int pfec)
> {
> u32 pkr_bits, offset;
> + u32 pkr;
>
> /*
> - * PKRU defines 32 bits, there are 16 domains and 2
> - * attribute bits per domain in pkru. pte_pkey is the
> - * index of the protection domain, so pte_pkey * 2 is
> - * is the index of the first bit for the domain.
> + * PKRU and PKRS both define 32 bits. There are 16 domains
> + * and 2 attribute bits per domain in them. pte_key is the
> + * index of the protection domain, so pte_pkey * 2 is the
> + * index of the first bit for the domain. The use of PKRU
> + * versus PKRS is selected by the address type, as determined
> + * by the U/S bit in the paging-structure entries.


Align and wrap closer to 80 please.

> */
> - pkr_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
> + if (pte_access & PT_USER_MASK)
> + pkr = is_cr4_pke(mmu) ? vcpu->arch.pkru : 0;
> + else
> + pkr = is_cr4_pks(mmu) ? kvm_read_pkrs(vcpu) : 0;
> +
> + pkr_bits = (pkr >> pte_pkey * 2) & 3;
>
> /* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
> offset = (pfec & ~1) + ((pte_access & PT_USER_MASK)
> --
> 2.25.1
>