During load-balance, groups classified as group_misfit_task are filtered
out if they do not pass
group_smaller_max_cpu_capacity(<candidate group>, <local group>);
which itself employs fits_capacity() to compare the sgc->max_capacity of
both groups.
Due to the underlying margin, fits_capacity(X, 1024) will return false for
any X > 819. Tough luck, the capacity_orig's on e.g. the Pixel 4 are
{261, 871, 1024}. If a CPU-bound task ends up on one of those "medium"
CPUs, misfit migration will never intentionally upmigrate it to a CPU of
higher capacity due to the aforementioned margin.
One may argue the 20% margin of fits_capacity() is excessive in the advent
of counter-enhanced load tracking (APERF/MPERF, AMUs), but one point here
is that fits_capacity() is meant to compare a utilization value to a
capacity value, whereas here it is being used to compare two capacity
values. As CPU capacity and task utilization have different dynamics, a
sensible approach here would be to add a new helper dedicated to comparing
CPU capacities.
Reviewed-by: Qais Yousef <qais.yousef@xxxxxxx>
Signed-off-by: Valentin Schneider <valentin.schneider@xxxxxxx>
---
kernel/sched/fair.c | 7 +++++++
1 file changed, 7 insertions(+)
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index db892f6e222f..ddb2ab3edf6d 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -113,6 +113,13 @@ int __weak arch_asym_cpu_priority(int cpu)
*/
#define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
+/*
+ * The margin used when comparing CPU capacities.
+ * is 'cap1' noticeably greater than 'cap2'
+ *
+ * (default: ~5%)
+ */
+#define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
#endif
#ifdef CONFIG_CFS_BANDWIDTH