
Multigenerational LRU

Quick start

Build options

Required: Set CONFIG_LRU_GEN=y.

Optional: Change CONFIG_NR_LRU_GENS to a number X to support a maximum of X
generations.

Optional: Set CONFIG_LRU_GEN_ENABLED=y to turn on by default.

Runtime options

Required: echo 1 >/sys/kernel/mm/lru_gen/enable if was not turned on by default.

Optional: Change /sys/kernel/mm/lru_gen/spread to a number N to spread pages out
into N+1 generations. Larger values make background aging more aggressive.

Optional: Read /sys/kernel/debug/lru_gen to verify the state of multigenerational LRU.
The file has the following format:

memcg memcg_id memcg_path
 node node_id
 min_seq birth_time anon_size file_size
 ...
 max_seq birth_time anon_size file_size

The minimum generation number a.k.a. min_seq is the oldest of all generations; the maximum generation
number a.k.a. max_seq is the youngest. Birth time is in milliseconds. Anon and file sizes are in pages.

Recipes

Android on
ARMv8.1+:

X=4, N=0

Android on
older ARM

CPUs:

Not recommended due to the lack of ARM64_HW_AFDBM

Linux laptops
running

Chrome on
x86_64:

X=7, N=2

Working set
estimation:

Write + memcg_id node_id max_seq [swappiness] to
/sys/kernel/debug/lru_gen to scan for accessed pages, update their
generation numbers to max_gen and create the next generation max_seq+1. A
swap file is required to enable anon multigenerational LRU. If swap is not desired,
set vm.swappiness to 0 and overwritten it with the optional parameter
[swappiness]. Otherwise anon multigenerational LRU will not be scanned even
though it is enabled.

Proactive
reclaim:

Write - memcg_id node_id min_seq [swappiness] [nr_to_reclaim] to
/sys/kernel/debug/lru_gen to evict generations older than min_seq. The
optional parameter nr_to_reclaim can be used to limit the number of pages to be
evicted from the oldest generation.

Workflow
Multigenerational LRU uses generation numbers to partition evictable pages. Raw generation numbers are
stored in struct lru_gen which is a member of struct lruvec. The youngest generation number
max_seq tracks both anon and file so they are aged on an equal footing. The oldest generation numbers
min_seq[2] track anon and file separately so clean file pages can be dropped regardless of swappiness.
Raw generation numbers are truncated into ilog2(CONFIG_NR_LRU_GENS)+1 bits to fit into
page->flags. Sliding window technique is used to prevent truncated generation numbers from
overlapping, which could be analogized to a ring buffer, with aging to the writer and eviction to the reader.
A set of per-type (anon/file) and per-zone page lists is indexed by each truncated generation number.
Pages are added to the lists indexed by max_seq when they are faulted in.

Aging
Aging produces new generations. For each aging cycle, all mapped pages that belong to an lruvec are
scanned. For pages that have been accessed since last scan, their generation numbers are updated to
max_seq. max_seq is incremented at the end of each cycle.

Aging maintains system- or memcg-wide mm list to scan mapped pages at minimum cost.

Eviction
Eviction consumes old generations. Pages on the per-zone lists indexed by min_seq[2] are scanned.
And pages are either sorted or isolated, depending on whether aging has updated their generation
numbers. Either min_seq is incremented when there are no pages left on its lists.

Eviction selects a type (anon/file) simply based on generations and swappiness.

Rationale

Characteristics of cloud-era workloads
Warning: though the following observations are made across millions of servers and clients at Google,
they may not be universally applicable.

Memory composition
With cloud storage gone mainstream, anonymous memory is now the majority and page cache contains
mostly executable pages and negligible unmapped pages. In addition, userspace is smart enough to avoid
page cache thrashing by taking advantage of AIO, direct I/O and io_uring when streaming large files
stored locally.

The profile of kswapd
As a result of the aforementioned memory composition, swapping is necessary to achieve substantial
memory overcommit. And since almost all pages are mapped, the rmap surpasses zram and becomes
the hottest path in kswapd.

For zram, a typical kswapd profile on v5.11 looks like:

31.03% page_vma_mapped_walk
25.59% lzo1x_1_do_compress
 4.63% do_raw_spin_lock
 3.89% vma_interval_tree_iter_next
 3.33% vma_interval_tree_subtree_search

And for disk swap, it looks like:

45.16% page_vma_mapped_walk
 7.61% do_raw_spin_lock
 5.69% vma_interval_tree_iter_next
 4.91% vma_interval_tree_subtree_search
 3.71% page_referenced_one

Limitations of the current implementation

Granularity of the active/inactive
For large systems that have tens or hundreds gigabytes of memory, the active/inactive sizes become too
coarse to be useful for memory overcommit. Pages counted as active can be less recently used than
pages counted as inactive because they will not be scanned until most inactive pages have.

For smaller systems, eviction is biased between anon and file because the selection is mainly based on
inference not direct comparisons. For example, on Chrome OS, executable pages are frequently evicted
despite the fact that there are many less recently used anon pages.

When there are multiple lruvecs, the active/inactive notion becomes even less useful because
comparisons between pages from different lruvecs is impossible based on this notion.

Memory locality of the rmap
The rmap has poor memory locality because of its complex data structures. On top of it, at least two walks
of the rmap are required before a page can be evicted after it is faulted in. The first walk clears the
accessed bit set upon the fault; the second walk verifies the page has not been accessed since then. Due
to the both factors, the cost of memory overcommit becomes significant when almost all pages are
mapped but only accessed every few minutes.

How multigenerational LRU solves the problems
Multigenerational LRU introduces a quantitative way to overcommit memory. For an lruvec, pages from
an older generation are guaranteed to be less recently used than those from a younger generation. For
different lruvecs, comparisons can be made approximately based on birth times.

Page tables have far better memory locality than the rmap when it comes to checking the accessed bit. As
counterintuitive as it may seem, for cloud-era workloads, tracking all accessed pages via page tables is a
lot less expensive than scanning pages one by one via the rmap. The overhead from page table walk is
proportional to the number of accessed pages, and the walk is only required when most pages have been
accessed. At this point, scanning pages one by one would be very inefficient because of the number of
pages to cover.

To-do list

KVM optimization
Support shadow page table walk.

NUMA optimization
Add per-node RSS for should_skip_mm().

Refault tracking optimization
Use generation numbers rather than LRU positions in workingset_eviction() and workingset_refault().

	Quick start
	Build options
	Runtime options
	Recipes

	Workflow
	Aging
	Eviction

	Rationale
	Characteristics of cloud-era workloads
	Memory composition
	The profile of kswapd

	Limitations of the current implementation
	Granularity of the active/inactive
	Memory locality of the rmap

	How multigenerational LRU solves the problems

	To-do list
	KVM optimization
	NUMA optimization
	Refault tracking optimization

