Re: [PATCH] hotplug: Optimize {get,put}_online_cpus()

From: Paul E. McKenney
Date: Tue Sep 24 2013 - 10:42:53 EST


On Tue, Sep 24, 2013 at 02:38:21PM +0200, Peter Zijlstra wrote:
>
> OK, so another attempt.
>
> This one is actually fair in that it immediately forces a reader
> quiescent state by explicitly implementing reader-reader recursion.
>
> This does away with the potentially long pending writer case and can
> thus use the simpler global state.
>
> I don't really like this lock being fair, but alas.
>
> Also, please have a look at the atomic_dec_and_test(cpuhp_waitcount) and
> cpu_hotplug_done(). I think its ok, but I keep confusing myself.

Cute!

Some commentary below. Also one question about how a race leading to
a NULL-pointer dereference is avoided.

Thanx, Paul

> ---
> --- a/include/linux/cpu.h
> +++ b/include/linux/cpu.h
> @@ -16,6 +16,7 @@
> #include <linux/node.h>
> #include <linux/compiler.h>
> #include <linux/cpumask.h>
> +#include <linux/percpu.h>
>
> struct device;
>
> @@ -173,10 +174,49 @@ extern struct bus_type cpu_subsys;
> #ifdef CONFIG_HOTPLUG_CPU
> /* Stop CPUs going up and down. */
>
> +extern void cpu_hotplug_init_task(struct task_struct *p);
> +
> extern void cpu_hotplug_begin(void);
> extern void cpu_hotplug_done(void);
> -extern void get_online_cpus(void);
> -extern void put_online_cpus(void);
> +
> +extern int __cpuhp_writer;
> +DECLARE_PER_CPU(unsigned int, __cpuhp_refcount);
> +
> +extern void __get_online_cpus(void);
> +
> +static inline void get_online_cpus(void)
> +{
> + might_sleep();
> +
> + if (current->cpuhp_ref++) {
> + barrier();
> + return;
> + }
> +
> + preempt_disable();
> + if (likely(!__cpuhp_writer))
> + __this_cpu_inc(__cpuhp_refcount);
> + else
> + __get_online_cpus();
> + preempt_enable();
> +}
> +
> +extern void __put_online_cpus(void);
> +
> +static inline void put_online_cpus(void)
> +{
> + barrier();
> + if (--current->cpuhp_ref)
> + return;
> +
> + preempt_disable();
> + if (likely(!__cpuhp_writer))
> + __this_cpu_dec(__cpuhp_refcount);
> + else
> + __put_online_cpus();
> + preempt_enable();
> +}
> +
> extern void cpu_hotplug_disable(void);
> extern void cpu_hotplug_enable(void);
> #define hotcpu_notifier(fn, pri) cpu_notifier(fn, pri)
> @@ -200,6 +240,8 @@ static inline void cpu_hotplug_driver_un
>
> #else /* CONFIG_HOTPLUG_CPU */
>
> +static inline void cpu_hotplug_init_task(struct task_struct *p) {}
> +
> static inline void cpu_hotplug_begin(void) {}
> static inline void cpu_hotplug_done(void) {}
> #define get_online_cpus() do { } while (0)
> --- a/include/linux/sched.h
> +++ b/include/linux/sched.h
> @@ -1454,6 +1454,9 @@ struct task_struct {
> unsigned int sequential_io;
> unsigned int sequential_io_avg;
> #endif
> +#ifdef CONFIG_HOTPLUG_CPU
> + int cpuhp_ref;
> +#endif
> };
>
> /* Future-safe accessor for struct task_struct's cpus_allowed. */
> --- a/kernel/cpu.c
> +++ b/kernel/cpu.c
> @@ -49,88 +49,115 @@ static int cpu_hotplug_disabled;
>
> #ifdef CONFIG_HOTPLUG_CPU
>
> -static struct {
> - struct task_struct *active_writer;
> - struct mutex lock; /* Synchronizes accesses to refcount, */
> - /*
> - * Also blocks the new readers during
> - * an ongoing cpu hotplug operation.
> - */
> - int refcount;
> -} cpu_hotplug = {
> - .active_writer = NULL,
> - .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
> - .refcount = 0,
> -};
> +static struct task_struct *cpuhp_writer_task = NULL;
>
> -void get_online_cpus(void)
> -{
> - might_sleep();
> - if (cpu_hotplug.active_writer == current)
> - return;
> - mutex_lock(&cpu_hotplug.lock);
> - cpu_hotplug.refcount++;
> - mutex_unlock(&cpu_hotplug.lock);
> +int __cpuhp_writer;
> +EXPORT_SYMBOL_GPL(__cpuhp_writer);
>
> +DEFINE_PER_CPU(unsigned int, __cpuhp_refcount);
> +EXPORT_PER_CPU_SYMBOL_GPL(__cpuhp_refcount);
> +
> +static atomic_t cpuhp_waitcount;
> +static atomic_t cpuhp_slowcount;
> +static DECLARE_WAIT_QUEUE_HEAD(cpuhp_wq);
> +
> +void cpu_hotplug_init_task(struct task_struct *p)
> +{
> + p->cpuhp_ref = 0;
> }
> -EXPORT_SYMBOL_GPL(get_online_cpus);
>
> -void put_online_cpus(void)
> +#define cpuhp_writer_wake() \
> + wake_up_process(cpuhp_writer_task)
> +
> +#define cpuhp_writer_wait(cond) \
> +do { \
> + for (;;) { \
> + set_current_state(TASK_UNINTERRUPTIBLE); \
> + if (cond) \
> + break; \
> + schedule(); \
> + } \
> + __set_current_state(TASK_RUNNING); \
> +} while (0)

Why not wait_event()? Presumably the above is a bit lighter weight,
but is that even something that can be measured?

> +void __get_online_cpus(void)
> {
> - if (cpu_hotplug.active_writer == current)
> + if (cpuhp_writer_task == current)
> return;
> - mutex_lock(&cpu_hotplug.lock);
>
> - if (WARN_ON(!cpu_hotplug.refcount))
> - cpu_hotplug.refcount++; /* try to fix things up */
> + atomic_inc(&cpuhp_waitcount);
> +
> + /*
> + * We either call schedule() in the wait, or we'll fall through
> + * and reschedule on the preempt_enable() in get_online_cpus().
> + */
> + preempt_enable_no_resched();
> + wait_event(cpuhp_wq, !__cpuhp_writer);

Finally! A good use for preempt_enable_no_resched(). ;-)

> + preempt_disable();
> +
> + /*
> + * It would be possible for cpu_hotplug_done() to complete before
> + * the atomic_inc() above; in which case there is no writer waiting
> + * and doing a wakeup would be BAD (tm).
> + *
> + * If however we still observe cpuhp_writer_task here we know
> + * cpu_hotplug_done() is currently stuck waiting for cpuhp_waitcount.
> + */
> + if (atomic_dec_and_test(&cpuhp_waitcount) && cpuhp_writer_task)

OK, I'll bite... What sequence of events results in the
atomic_dec_and_test() returning true but there being no
cpuhp_writer_task?

Ah, I see it...

o Task A becomes the writer.

o Task B tries to read, but stalls for whatever reason before
the atomic_inc().

o Task A completes its write-side operation. It sees no readers
blocked, so goes on its merry way.

o Task B does its atomic_inc(), does its read, then sees
atomic_dec_and_test() return zero, but cpuhp_writer_task
is NULL, so it doesn't do the wakeup.

But what prevents the following sequence of events?

o Task A becomes the writer.

o Task B tries to read, but stalls for whatever reason before
the atomic_inc().

o Task A completes its write-side operation. It sees no readers
blocked, so goes on its merry way, but is delayed before it
NULLs cpuhp_writer_task.

o Task B does its atomic_inc(), does its read, then sees
atomic_dec_and_test() return zero. However, it sees
cpuhp_writer_task as non-NULL.

o Then Task A NULLs cpuhp_writer_task.

o Task B's call to cpuhp_writer_wake() sees a NULL pointer.

> + cpuhp_writer_wake();
> +}
> +EXPORT_SYMBOL_GPL(__get_online_cpus);
>
> - if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer))
> - wake_up_process(cpu_hotplug.active_writer);
> - mutex_unlock(&cpu_hotplug.lock);
> +void __put_online_cpus(void)
> +{
> + if (cpuhp_writer_task == current)
> + return;
>
> + if (atomic_dec_and_test(&cpuhp_slowcount))
> + cpuhp_writer_wake();
> }
> -EXPORT_SYMBOL_GPL(put_online_cpus);
> +EXPORT_SYMBOL_GPL(__put_online_cpus);
>
> /*
> * This ensures that the hotplug operation can begin only when the
> * refcount goes to zero.
> *
> - * Note that during a cpu-hotplug operation, the new readers, if any,
> - * will be blocked by the cpu_hotplug.lock
> - *
> * Since cpu_hotplug_begin() is always called after invoking
> * cpu_maps_update_begin(), we can be sure that only one writer is active.
> - *
> - * Note that theoretically, there is a possibility of a livelock:
> - * - Refcount goes to zero, last reader wakes up the sleeping
> - * writer.
> - * - Last reader unlocks the cpu_hotplug.lock.
> - * - A new reader arrives at this moment, bumps up the refcount.
> - * - The writer acquires the cpu_hotplug.lock finds the refcount
> - * non zero and goes to sleep again.
> - *
> - * However, this is very difficult to achieve in practice since
> - * get_online_cpus() not an api which is called all that often.
> - *
> */
> void cpu_hotplug_begin(void)
> {
> - cpu_hotplug.active_writer = current;
> + unsigned int count = 0;
> + int cpu;
> +
> + lockdep_assert_held(&cpu_add_remove_lock);
>
> - for (;;) {
> - mutex_lock(&cpu_hotplug.lock);
> - if (likely(!cpu_hotplug.refcount))
> - break;
> - __set_current_state(TASK_UNINTERRUPTIBLE);
> - mutex_unlock(&cpu_hotplug.lock);
> - schedule();
> + __cpuhp_writer = 1;
> + cpuhp_writer_task = current;

At this point, the value of cpuhp_slowcount can go negative. Can't see
that this causes a problem, given the atomic_add() below.

> +
> + /* After this everybody will observe writer and take the slow path. */
> + synchronize_sched();
> +
> + /* Collapse the per-cpu refcount into slowcount */
> + for_each_possible_cpu(cpu) {
> + count += per_cpu(__cpuhp_refcount, cpu);
> + per_cpu(__cpuhp_refcount, cpu) = 0;
> }

The above is safe because the readers are no longer changing their
__cpuhp_refcount values.

> + atomic_add(count, &cpuhp_slowcount);
> +
> + /* Wait for all readers to go away */
> + cpuhp_writer_wait(!atomic_read(&cpuhp_slowcount));
> }
>
> void cpu_hotplug_done(void)
> {
> - cpu_hotplug.active_writer = NULL;
> - mutex_unlock(&cpu_hotplug.lock);
> + /* Signal the writer is done */
> + cpuhp_writer = 0;
> + wake_up_all(&cpuhp_wq);
> +
> + /* Wait for any pending readers to be running */
> + cpuhp_writer_wait(!atomic_read(&cpuhp_waitcount));
> + cpuhp_writer_task = NULL;
> }
>
> /*
> --- a/kernel/sched/core.c
> +++ b/kernel/sched/core.c
> @@ -1736,6 +1736,8 @@ static void __sched_fork(unsigned long c
> INIT_LIST_HEAD(&p->numa_entry);
> p->numa_group = NULL;
> #endif /* CONFIG_NUMA_BALANCING */
> +
> + cpu_hotplug_init_task(p);
> }
>
> #ifdef CONFIG_NUMA_BALANCING
>

--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/