Re: [PATCH v3 00/10] Introduce huge zero page

From: Kirill A. Shutemov
Date: Thu Oct 18 2012 - 10:49:20 EST


On Wed, Oct 17, 2012 at 10:32:13AM +0800, Ni zhan Chen wrote:
> On 10/03/2012 08:04 AM, Kirill A. Shutemov wrote:
> >On Tue, Oct 02, 2012 at 03:31:48PM -0700, Andrew Morton wrote:
> >>On Tue, 2 Oct 2012 18:19:22 +0300
> >>"Kirill A. Shutemov" <kirill.shutemov@xxxxxxxxxxxxxxx> wrote:
> >>
> >>>During testing I noticed big (up to 2.5 times) memory consumption overhead
> >>>on some workloads (e.g. ft.A from NPB) if THP is enabled.
> >>>
> >>>The main reason for that big difference is lacking zero page in THP case.
> >>>We have to allocate a real page on read page fault.
> >>>
> >>>A program to demonstrate the issue:
> >>>#include <assert.h>
> >>>#include <stdlib.h>
> >>>#include <unistd.h>
> >>>
> >>>#define MB 1024*1024
> >>>
> >>>int main(int argc, char **argv)
> >>>{
> >>> char *p;
> >>> int i;
> >>>
> >>> posix_memalign((void **)&p, 2 * MB, 200 * MB);
> >>> for (i = 0; i < 200 * MB; i+= 4096)
> >>> assert(p[i] == 0);
> >>> pause();
> >>> return 0;
> >>>}
> >>>
> >>>With thp-never RSS is about 400k, but with thp-always it's 200M.
> >>>After the patcheset thp-always RSS is 400k too.
> >>I'd like to see a full description of the design, please.
> >Okay. Design overview.
> >
> >Huge zero page (hzp) is a non-movable huge page (2M on x86-64) filled with
> >zeros. The way how we allocate it changes in the patchset:
> >
> >- [01/10] simplest way: hzp allocated on boot time in hugepage_init();
> >- [09/10] lazy allocation on first use;
> >- [10/10] lockless refcounting + shrinker-reclaimable hzp;
> >
> >We setup it in do_huge_pmd_anonymous_page() if area around fault address
> >is suitable for THP and we've got read page fault.
> >If we fail to setup hzp (ENOMEM) we fallback to handle_pte_fault() as we
> >normally do in THP.
> >
> >On wp fault to hzp we allocate real memory for the huge page and clear it.
> >If ENOMEM, graceful fallback: we create a new pmd table and set pte around
> >fault address to newly allocated normal (4k) page. All other ptes in the
> >pmd set to normal zero page.
> >
> >We cannot split hzp (and it's bug if we try), but we can split the pmd
> >which points to it. On splitting the pmd we create a table with all ptes
> >set to normal zero page.
> >
> >Patchset organized in bisect-friendly way:
> > Patches 01-07: prepare all code paths for hzp
> > Patch 08: all code paths are covered: safe to setup hzp
> > Patch 09: lazy allocation
> > Patch 10: lockless refcounting for hzp
> >
> >--------------------------------------------------------------------------
> >
> >By hpa request I've tried alternative approach for hzp implementation (see
> >Virtual huge zero page patchset): pmd table with all entries set to zero
> >page. This way should be more cache friendly, but it increases TLB
> >pressure.
> >
> >The problem with virtual huge zero page: it requires per-arch enabling.
> >We need a way to mark that pmd table has all ptes set to zero page.
> >
> >Some numbers to compare two implementations (on 4s Westmere-EX):
> >
> >Mirobenchmark1
> >==============
> >
> >test:
> > posix_memalign((void **)&p, 2 * MB, 8 * GB);
> > for (i = 0; i < 100; i++) {
> > assert(memcmp(p, p + 4*GB, 4*GB) == 0);
> > asm volatile ("": : :"memory");
> > }
> >
> >hzp:
> > Performance counter stats for './test_memcmp' (5 runs):
> >
> > 32356.272845 task-clock # 0.998 CPUs utilized ( +- 0.13% )
> > 40 context-switches # 0.001 K/sec ( +- 0.94% )
> > 0 CPU-migrations # 0.000 K/sec
> > 4,218 page-faults # 0.130 K/sec ( +- 0.00% )
> > 76,712,481,765 cycles # 2.371 GHz ( +- 0.13% ) [83.31%]
> > 36,279,577,636 stalled-cycles-frontend # 47.29% frontend cycles idle ( +- 0.28% ) [83.35%]
> > 1,684,049,110 stalled-cycles-backend # 2.20% backend cycles idle ( +- 2.96% ) [66.67%]
> > 134,355,715,816 instructions # 1.75 insns per cycle
> > # 0.27 stalled cycles per insn ( +- 0.10% ) [83.35%]
> > 13,526,169,702 branches # 418.039 M/sec ( +- 0.10% ) [83.31%]
> > 1,058,230 branch-misses # 0.01% of all branches ( +- 0.91% ) [83.36%]
> >
> > 32.413866442 seconds time elapsed ( +- 0.13% )
> >
> >vhzp:
> > Performance counter stats for './test_memcmp' (5 runs):
> >
> > 30327.183829 task-clock # 0.998 CPUs utilized ( +- 0.13% )
> > 38 context-switches # 0.001 K/sec ( +- 1.53% )
> > 0 CPU-migrations # 0.000 K/sec
> > 4,218 page-faults # 0.139 K/sec ( +- 0.01% )
> > 71,964,773,660 cycles # 2.373 GHz ( +- 0.13% ) [83.35%]
> > 31,191,284,231 stalled-cycles-frontend # 43.34% frontend cycles idle ( +- 0.40% ) [83.32%]
> > 773,484,474 stalled-cycles-backend # 1.07% backend cycles idle ( +- 6.61% ) [66.67%]
> > 134,982,215,437 instructions # 1.88 insns per cycle
> > # 0.23 stalled cycles per insn ( +- 0.11% ) [83.32%]
> > 13,509,150,683 branches # 445.447 M/sec ( +- 0.11% ) [83.34%]
> > 1,017,667 branch-misses # 0.01% of all branches ( +- 1.07% ) [83.32%]
> >
> > 30.381324695 seconds time elapsed ( +- 0.13% )
> >
> >Mirobenchmark2
> >==============
> >
> >test:
> > posix_memalign((void **)&p, 2 * MB, 8 * GB);
> > for (i = 0; i < 1000; i++) {
> > char *_p = p;
> > while (_p < p+4*GB) {
> > assert(*_p == *(_p+4*GB));
> > _p += 4096;
> > asm volatile ("": : :"memory");
> > }
> > }
> >
> >hzp:
> > Performance counter stats for 'taskset -c 0 ./test_memcmp2' (5 runs):
> >
> > 3505.727639 task-clock # 0.998 CPUs utilized ( +- 0.26% )
> > 9 context-switches # 0.003 K/sec ( +- 4.97% )
> > 4,384 page-faults # 0.001 M/sec ( +- 0.00% )
> > 8,318,482,466 cycles # 2.373 GHz ( +- 0.26% ) [33.31%]
> > 5,134,318,786 stalled-cycles-frontend # 61.72% frontend cycles idle ( +- 0.42% ) [33.32%]
> > 2,193,266,208 stalled-cycles-backend # 26.37% backend cycles idle ( +- 5.51% ) [33.33%]
> > 9,494,670,537 instructions # 1.14 insns per cycle
> > # 0.54 stalled cycles per insn ( +- 0.13% ) [41.68%]
> > 2,108,522,738 branches # 601.451 M/sec ( +- 0.09% ) [41.68%]
> > 158,746 branch-misses # 0.01% of all branches ( +- 1.60% ) [41.71%]
> > 3,168,102,115 L1-dcache-loads
> > # 903.693 M/sec ( +- 0.11% ) [41.70%]
> > 1,048,710,998 L1-dcache-misses
> > # 33.10% of all L1-dcache hits ( +- 0.11% ) [41.72%]
> > 1,047,699,685 LLC-load
> > # 298.854 M/sec ( +- 0.03% ) [33.38%]
> > 2,287 LLC-misses
> > # 0.00% of all LL-cache hits ( +- 8.27% ) [33.37%]
> > 3,166,187,367 dTLB-loads
> > # 903.147 M/sec ( +- 0.02% ) [33.35%]
> > 4,266,538 dTLB-misses
> > # 0.13% of all dTLB cache hits ( +- 0.03% ) [33.33%]
> >
> > 3.513339813 seconds time elapsed ( +- 0.26% )
> >
> >vhzp:
> > Performance counter stats for 'taskset -c 0 ./test_memcmp2' (5 runs):
> >
> > 27313.891128 task-clock # 0.998 CPUs utilized ( +- 0.24% )
> > 62 context-switches # 0.002 K/sec ( +- 0.61% )
> > 4,384 page-faults # 0.160 K/sec ( +- 0.01% )
> > 64,747,374,606 cycles # 2.370 GHz ( +- 0.24% ) [33.33%]
> > 61,341,580,278 stalled-cycles-frontend # 94.74% frontend cycles idle ( +- 0.26% ) [33.33%]
> > 56,702,237,511 stalled-cycles-backend # 87.57% backend cycles idle ( +- 0.07% ) [33.33%]
> > 10,033,724,846 instructions # 0.15 insns per cycle
> > # 6.11 stalled cycles per insn ( +- 0.09% ) [41.65%]
> > 2,190,424,932 branches # 80.195 M/sec ( +- 0.12% ) [41.66%]
> > 1,028,630 branch-misses # 0.05% of all branches ( +- 1.50% ) [41.66%]
> > 3,302,006,540 L1-dcache-loads
> > # 120.891 M/sec ( +- 0.11% ) [41.68%]
> > 271,374,358 L1-dcache-misses
> > # 8.22% of all L1-dcache hits ( +- 0.04% ) [41.66%]
> > 20,385,476 LLC-load
> > # 0.746 M/sec ( +- 1.64% ) [33.34%]
> > 76,754 LLC-misses
> > # 0.38% of all LL-cache hits ( +- 2.35% ) [33.34%]
> > 3,309,927,290 dTLB-loads
> > # 121.181 M/sec ( +- 0.03% ) [33.34%]
> > 2,098,967,427 dTLB-misses
> > # 63.41% of all dTLB cache hits ( +- 0.03% ) [33.34%]
> >
> > 27.364448741 seconds time elapsed ( +- 0.24% )
> >
> >--------------------------------------------------------------------------
>
> Hi Kirill A. Shutemov,
>
> I see in the kernel doc which describes the benefit of thp, "the TLB
> miss will run faster" (especially with virtualization using nested
> pagetables but almost always also on bare metal without
> virtualization).
>
> Could you explain me why TLB miss run faster? I think it only reduce
> TLB miss ratio.

TLB miss for huge page resolved on PMD, not on PTE level, so it's -1 table
lookup.

--
Kirill A. Shutemov
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/