Adaptive Readahead

State of the Art

Fengguang Wu

2006.9.22

the Stock Readahead

* simple
- fast
- understandable

 dumb

- cache hit

- thrashing

- memory consumption
- multiple streams

Why a Complex
Replacement?

* Yeah, 1500 LOC

* Not a problem, when it keeps

- simplicity of concept
- efficiency of execution

Why a Complex
Replacement?

 Even good, when it brings

- robustness

- hew features

- memory efficiency
- higher 1/O capability
—a bunch of statistics

Call Scheme

e stock

- 0oNh read() Invocation

- on look-ahead index
* adaptive

- on page fault

- on look-ahead mark

Call Scheme

 benefits

- avoids cache hit problem
- fadvise () harmony

- work with semi-sequential I/O

Readahead Size

* stock
-up: *4 then *2
-top: readahead max
* adaptive
- up: *2 + readahead max/16

-top: threshing threshold

Key Components

 stateful method

- the fast and default one
- bails out on abnormal cases

 stateless method

- the robust and failsafe one
- gueries the page cache

Stateful Algorithm

chunk A chunk B
| <=============== global shift ================|
S —— + S + |
| # | | # | inactive list |
S TR + Sy + head |
|--=->| |—=mmmme e >|

+—= stream;shift S

While the stream reads stream shift pages inside the chunks,
the chunks are shifted global shift pages inside inactive list.

thrashing threshold = free mem *
stream shift / global shift

thrashing threshold *= readahead ratio/100

Stateful Benefits

* thrashing safe

* less memory consumption
* thousands of streams

* non-uniform streams

Stateless Algorithm

1. count history pages => H
2. readahead R pages
* simplified relation
R = H
* in practical

R = min(H * readahead ratio/100,

readahead max)

Stateless Benefits

* semi-sequential I/O

- parallel/interleaved sequential scans on
one file descriptor

- sequential reads across file open/close
lifetime

- mixed sequential/random accesses
- sparse/skimming sequential reads

Stateless Benefits

* simplifies stateful method

- restart readahead after abnormal cases
(1.e. after cache hit)

* thrashing safe

Stateless Overheads
(tiny ones)
* page cache lookup

- lock contention
* solved by Nick Piggin's lockless patch

- L1/2 cache miss

« small scan: already cache warm

* [arge scan: not a big problem for array;
even better for radix-tree

* page flag check

- 2 checks In normal

Stateless Overheads
(major ones)

* readahead miss

-on random 1/O
- can be a loss for sparse 1/0Os

* NFS contention

- duplicate readaheads
* triggered by concurrent, nearby reads
- can occur when

e rsize <= 32K

e near start of file

the Duties

*adpps
- fadvise for random /O

e kernel

- detect sequential I/O
- readahead at the right time and size

the Duties

* fadvise for sequential 1/0:
not a good thing

* Why kernel? Information and
resource management!

- memory availability

- streams In the system
- data layout

- disk utilization

Default Choice?

» stateful method: y/N

- candidate as stock readahead
replacement in the long run

* stateless method: y/M/n

- obvious benefits In some cases
- obvious overheads for others

Work...

e context method runtime
selectable

- as module, or as tunable parameter?
» statistics infrastructure
- almost complete

* remove Iinitial readahead
intelligence

- turn to a tunable

Work...

 improve NFS performance
- untested idea

 improve small files handling
- untested idea

* docs

- benchmarks

Benchmarks...

* pure random I/O

- overheads on lockless pagecache
- readahead miss on different sparseness

* NFS

- rsize / file size combinations
- performance tuning

e small files

Thank you.

Readahead Chunk

a read-ahead chunk

When this page 1s read, notify me
for the next read-ahead.

Readahead Chunks

chunk A chunk B chunk C head
101 111 112 121 122
| |-->]-->] | ------ >|-->| | ------ >|
| +——m——- + S + R + |
I | o | # | |
| === + e + e + |
LO L1 L2
Let £(l1l) = L be a map from

l: the number of pages read by the stream
to

L: the number of pages pushed into inactive list in the mean time
then

f(101) <= LO

£(111 + 112) = L1
£(121 + 122) = L2

£(101 + 111 + ...) <= Sum(LO + L1 + ...)
<= Length(inactive list) = f(thrashing-threshold)

So the count of countinuous history pages left in the inactive list is always
a lower estimation of the true thrashing-threshold.

